### Refine

#### Has Fulltext

- yes (10)

#### Is part of the Bibliography

- no (10)

#### Keywords

- Finitely many measurements (2)
- Calderón problem (1)
- Convexity (1)
- Finite element methods (1)
- Inverse Problem (1)
- Inverse problems (1)
- Loewner monotonicity and convexity (1)
- Loewner order (1)
- Monotonicity (1)
- Piecewise-constant coefficient (1)

#### Institute

- Mathematik (8)
- Informatik und Mathematik (2)
- Präsidium (1)

We derive a simple criterion that ensures uniqueness, Lipschitz stability and global convergence of Newton’s method for the finite dimensional zero-finding problem of a continuously differentiable, pointwise convex and monotonic function. Our criterion merely requires to evaluate the directional derivative of the forward function at finitely many evaluation points and for finitely many directions. We then demonstrate that this result can be used to prove uniqueness, stability and global convergence for an inverse coefficient problem with finitely many measurements. We consider the problem of determining an unknown inverse Robin transmission coefficient in an elliptic PDE. Using a relation to monotonicity and localized potentials techniques, we show that a piecewise-constant coefficient on an a-priori known partition with a-priori known bounds is uniquely determined by finitely many boundary measurements and that it can be uniquely and stably reconstructed by a globally convergent Newton iteration. We derive a constructive method to identify these boundary measurements, calculate the stability constant and give a numerical example.

Several novel imaging and non-destructive testing technologies are based on reconstructing the spatially dependent coefficient in an elliptic partial differential equation from measurements of its solution(s). In practical applications, the unknown coefficient is often assumed to be piecewise constant on a given pixel partition (corresponding to the desired resolution), and only finitely many measurement can be made. This leads to the problem of inverting a finite-dimensional non-linear forward operator F: D(F)⊆Rn→Rm , where evaluating ℱ requires one or several PDE solutions.
Numerical inversion methods require the implementation of this forward operator and its Jacobian. We show how to efficiently implement both using a standard FEM package and prove convergence of the FEM approximations against their true-solution counterparts. We present simple example codes for Comsol with the Matlab Livelink package, and numerically demonstrate the challenges that arise from non-uniqueness, non-linearity and instability issues. We also discuss monotonicity and convexity properties of the forward operator that arise for symmetric measurement settings.
This text assumes the reader to have a basic knowledge on Finite Element Methods, including the variational formulation of elliptic PDEs, the Lax-Milgram-theorem, and the Céa-Lemma. Section 3 also assumes that the reader is familiar with the concept of Fréchet differentiability.

Gleichungen mit mehreren Unbekannten zu lösen, üben Schüler schon in der Mittelstufe. Für die einen ist es eine spannende mathematische Knobelei, für die anderen eher Quälerei. Doch den wenigsten ist bewusst, wie viele Leben dadurch jeden Tag gerettet werden. Die moderne medizinische Bildgebung beruht darauf, sehr viele Gleichungen nach sehr vielen Unbekannten aufzulösen.

The Calderón problem with finitely many unknowns is equivalent to convex semidefinite optimization
(2023)

We consider the inverse boundary value problem of determining a coefficient function in an elliptic partial differential equation from knowledge of the associated Neumann-Dirichlet-operator. The unknown coefficient function is assumed to be piecewise constant with respect to a given pixel partition, and upper and lower bounds are assumed to be known a-priori.
We will show that this Calderón problem with finitely many unknowns can be equivalently formulated as a minimization problem for a linear cost functional with a convex non-linear semidefinite constraint. We also prove error estimates for noisy data, and extend the result to the practically relevant case of finitely many measurements, where the coefficient is to be reconstructed from a finite-dimensional Galerkin projection of the Neumann-Dirichlet-operator.
Our result is based on previous works on Loewner monotonicity and convexity of the Neumann-Dirichlet-operator, and the technique of localized potentials. It connects the emerging fields of inverse coefficient problems and semidefinite optimization.

We deal with the reconstruction of inclusions in elastic bodies based on monotonicity methods and construct conditions under which a resolution for a given partition can be achieved. These conditions take into account the background error as well as the measurement noise. As a main result, this shows us that the resolution guarantees depend heavily on the Lamé parameter μ and only marginally on λ.

Solving an inverse elliptic coefficient problem by convex non-linear semidefinite programming
(2021)

Several applications in medical imaging and non-destructive material testing lead to inverse elliptic coefficient problems, where an unknown coefficient function in an elliptic PDE is to be determined from partial knowledge of its solutions. This is usually a highly non-linear ill-posed inverse problem, for which unique reconstructability results, stability estimates and global convergence of numerical methods are very hard to achieve. The aim of this note is to point out a new connection between inverse coefficient problems and semidefinite programming that may help addressing these challenges. We show that an inverse elliptic Robin transmission problem with finitely many measurements can be equivalently rewritten as a uniquely solvable convex non-linear semidefinite optimization problem. This allows to explicitly estimate the number of measurements that is required to achieve a desired resolution, to derive an error estimate for noisy data, and to overcome the problem of local minima that usually appears in optimization-based approaches for inverse coefficient problems.

Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes
(2019)

For the linearized reconstruction problem in electrical impedance tomography with the complete electrode model, Lechleiter and Rieder (2008 Inverse Problems 24 065009) have shown that a piecewise polynomial conductivity on a fixed partition is uniquely determined if enough electrodes are being used. We extend their result to the full non-linear case and show that measurements on a sufficiently high number of electrodes uniquely determine a conductivity in any finite-dimensional subset of piecewise-analytic functions. We also prove Lipschitz stability, and derive analogue results for the continuum model, where finitely many measurements determine a finite-dimensional Galerkin projection of the Neumann-to-Dirichlet operator on a boundary part.

We deal with the shape reconstruction of inclusions in elastic bodies. For solving this inverse problem in practice, data fitting functionals are used. Those work better than the rigorous monotonicity methods from Eberle and Harrach (Inverse Probl 37(4):045006, 2021), but have no rigorously proven convergence theory. Therefore we show how the monotonicity methods can be converted into a regularization method for a data-fitting functional without losing the convergence properties of the monotonicity methods. This is a great advantage and a significant improvement over standard regularization techniques. In more detail, we introduce constraints on the minimization problem of the residual based on the monotonicity methods and prove the existence and uniqueness of a minimizer as well as the convergence of the method for noisy data. In addition, we compare numerical reconstructions of inclusions based on the monotonicity-based regularization with a standard approach (one-step linearization with Tikhonov-like regularization), which also shows the robustness of our method regarding noise in practice.

This article deals with the solution of linear ill-posed equations in Hilbert spaces. Often, one only has a corrupted measurement of the right hand side at hand and the Bakushinskii veto tells us, that we are not able to solve the equation if we do not know the noise level. But in applications it is ad hoc unrealistic to know the error of a measurement. In practice, the error of a measurement may often be estimated through averaging of multiple measurements. We integrated that in our anlaysis and obtained convergence to the true solution, with the only assumption that the measurements are unbiased, independent and identically distributed according to an unknown distribution.

In this short note, we investigate simultaneous recovery inverse problems for semilinear elliptic equations with partial data. The main technique is based on higher order linearization and monotonicity approaches. With these methods at hand, we can determine the diffusion, cavity and coefficients simultaneously by knowing the corresponding localized Dirichlet-Neumann operators.