Refine
Year of publication
Document Type
- Article (14)
- Preprint (5)
- Part of a Book (1)
Has Fulltext
- yes (20)
Is part of the Bibliography
- no (20)
Keywords
- Epilepsy (3)
- Seizure (2)
- EGFR (1)
- Epidemiologie (1)
- Epigenetik (1)
- Ernährung (1)
- Fracture (1)
- Gastric motility (1)
- Genetics (1)
- Gut (1)
Institute
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
Objective: To evaluate the incidence and risk factors of generalized convulsive seizure (GCS)-related fractures and injuries during video-EEG monitoring.
Methods: We analyzed all GCSs in patients undergoing video-EEG-monitoring between 2007 and 2019 at epilepsy centers in Frankfurt and Marburg in relation to injuries, falls and accidents associated with GCSs. Data were gathered using video material, EEG material, and a standardized reporting form.
Results: A total of 626 GCSs from 411 patients (mean age: 33.6 years; range 3–74 years; 45.0% female) were analyzed. Severe adverse events (SAEs) such as fractures, joint luxation, corneal erosion, and teeth loosening were observed in 13 patients resulting in a risk of 2.1% per GCS (95% CI 1.2–3.4%) and 3.2% per patient (95% CI 1.8–5.2%). Except for a nasal fracture due to a fall onto the face, no SAEs were caused by falls, and all occurred in patients lying in bed without evidence of external trauma. In seven patients, vertebral body compression fractures were confirmed by imaging. This resulted in a risk of 1.1% per GCS (95% CI 0.5–2.2%) and 1.7% per patient (95% CI 0.8–3.3%). These fractures occurred within the tonic phase of a GCS and were accompanied by a characteristic cracking noise. All affected patients reported back pain spontaneously, and an increase in pain on percussion of the affected spine section.
Conclusions: GCSs are associated with a substantial risk of fractures and shoulder dislocations that are not associated with falls. GCSs accompanied by audible cracking, and resulting in back pain, should prompt clinical and imaging evaluations.
Bipolar disorder (BD) is a highly heritable neuropsychiatric disease characterized by recurrent episodes of mania and depression. BD shows substantial clinical and genetic overlap with other psychiatric disorders, in particular schizophrenia (SCZ). The genes underlying this etiological overlap remain largely unknown. A recent SCZ genome wide association study (GWAS) by the Psychiatric Genomics Consortium identified 128 independent genome-wide significant single nucleotide polymorphisms (SNPs). The present study investigated whether these SCZ-associated SNPs also contribute to BD development through the performance of association testing in a large BD GWAS dataset (9747 patients, 14278 controls). After re-imputation and correction for sample overlap, 22 of 107 investigated SCZ SNPs showed nominal association with BD. The number of shared SCZ-BD SNPs was significantly higher than expected (p = 1.46x10-8). This provides further evidence that SCZ-associated loci contribute to the development of BD. Two SNPs remained significant after Bonferroni correction. The most strongly associated SNP was located near TRANK1, which is a reported genome-wide significant risk gene for BD. Pathway analyses for all shared SCZ-BD SNPs revealed 25 nominally enriched gene-sets, which showed partial overlap in terms of the underlying genes. The enriched gene-sets included calcium- and glutamate signaling, neuropathic pain signaling in dorsal horn neurons, and calmodulin binding. The present data provide further insights into shared risk loci and disease-associated pathways for BD and SCZ. This may suggest new research directions for the treatment and prevention of these two major psychiatric disorders.
Bipolar disorder (BD) is a leading contributor to the global burden of disease1. Despite high heritability (60-80%), the majority of the underlying genetic determinants remain unknown2. We analysed data from participants of European, East Asian, African American and Latino ancestries (n=158,036 BD cases, 2.8 million controls), combining Clinical, Community, and Self-reported samples. We identified 298 genome-wide significant loci in the multi-ancestry meta-analysis, a 4-fold increase over previous findings3, and identified a novel ancestry-specific association in the East Asian cohort. Integrating results from fine-mapping and other variant-to-gene mapping approaches identified 36 credible genes in the aetiology of BD. Genes prioritised through fine-mapping were enriched for ultra-rare damaging missense and protein-truncating variations in BD cases4, highlighting convergence of common and rare variant signals. We report differences in genetic architecture of BD depending on the source of patient ascertainment and on BD-subtype (BDI and BDII). Several analyses implicate specific cell types in BD pathophysiology, including GABAergic interneurons and medium spiny neurons. Together, these analyses provide novel insights into the genetic architecture and biological underpinnings of BD.
In recent years, the clinical usefulness of the Wada test (WT) has been debated among researchers in the field. Therefore, we aimed to assess its contribution to the prediction of change in verbal learning and verbal memory function after epilepsy surgery. Data from 56 patients with temporal lobe epilepsy who underwent WT and subsequent surgery were analyzed retrospectively. Additionally, a standard neuropsychological assessment evaluating attentional, learning and memory, visuospatial, language, and executive function was performed both before and 12 months after surgery. Hierarchical linear regression analyses were used to determine the incremental value of WT results over socio-demographic, clinical, and neuropsychological characteristics in predicting postsurgical change in patients’ verbal learning and verbal memory function. The incorporation of WT results significantly improved the prediction models of postsurgical change in verbal learning (∆R2 = 0.233, p = .032) and verbal memory function (∆R2 = 0.386, p = .005). Presurgical performance and WT scores accounted for 41.8% of the variance in postsurgical change in verbal learning function, and 51.1% of the variance in postsurgical change in verbal memory function. Our findings confirm that WT results are of significant incremental value for the prediction of postsurgical change in verbal learning and verbal memory function. Thus, the WT contributes to determining the risks of epilepsy surgery and, therefore, remains an important part of the presurgical work-up of selected patients with clear clinical indications.
Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71–110, 158–167, 180–203, and 264–286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71–110 and HlyAΔ264–286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158–167 and HlyAΔ180–203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71–110 and HlyAΔ264–286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71–110, and HlyAΔ264–286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures.
Background: The most common spinocerebellar ataxias (SCA)—SCA1, SCA2, SCA3, and SCA6—are caused by (CAG)n repeat expansion. While the number of repeats of the coding (CAG)n expansions is correlated with the age at onset, there are no appropriate models that include both affected and preclinical carriers allowing for the prediction of age at onset.
Methods: We combined data from two major European cohorts of SCA1, SCA2, SCA3, and SCA6 mutation carriers: 1187 affected individuals from the EUROSCA registry and 123 preclinical individuals from the RISCA cohort. For each SCA genotype, a regression model was fitted using a log-normal distribution for age at onset with the repeat length of the alleles as covariates. From these models, we calculated expected age at onset from birth and conditionally that this age is greater than the current age.
Results: For SCA2 and SCA3 genotypes, the expanded allele was a significant predictor of age at onset (−0.105±0.005 and −0.056±0.003) while for SCA1 and SCA6 genotypes both the size of the expanded and normal alleles were significant (expanded: −0.049±0.002 and −0.090±0.009, respectively; normal: +0.013±0.005 and −0.029±0.010, respectively). According to the model, we indicated the median values (90% critical region) and the expectancy (SD) of the predicted age at onset for each SCA genotype according to the CAG repeat size and current age.
Conclusions: These estimations can be valuable in clinical and research. However, results need to be confirmed in other independent cohorts and in future longitudinal studies.
Social insects dominate arthropod communities worldwide due to cooperation and division of labor in their societies. This, however, makes them vulnerable to exploitation by social parasites, such as slave‐making ants. Slave‐making ant workers pillage brood from neighboring nests of related host ant species. After emergence, host workers take over all nonreproductive colony tasks, whereas slavemakers have lost the ability to care for themselves and their offspring. Here, we compared transcriptomes of different developmental stages (larvae, pupae, and adults), castes (queens and workers), and sexes of two related ant species, the slavemaker Temnothorax americanus and its host Temnothorax longispinosus. Our aim was to investigate commonalities and differences in group‐specific transcriptomes, whereupon across‐species differences possibly can be explained by their divergent lifestyles. Larvae and pupae showed the highest similarity between the two species and upregulated genes with enriched functions of translation and chitin metabolism, respectively. Workers commonly upregulated oxidation‐reduction genes, possibly indicative of their active lifestyle. Host workers, but not workers of the slavemaker, upregulated a “social behavior” gene. In slavemaker queens and workers, genes associated with the regulation of transposable elements were upregulated. Queens of both species showed transcriptomic signals of anti‐aging mechanisms, with hosts upregulating various DNA repair pathways and slavemaker queens investing in trehalose metabolism. The transcriptomes of males showed enriched functions for quite general terms realized in different genes and pathways in each species. In summary, the strong interspecific commonalities in larvae, pupae, and workers were reflected in the same enriched Gene Ontology (GO) terms. Less commonalities occurred in the transcriptomes of queens and males, which apparently utilize different pathways to achieve a long life and sperm production, respectively. We found that all analyzed groups in this study show characteristic GO terms, with similar patterns in both species.
Background: As adults with congenital heart disease (ACHD) are getting older, acquired comorbidities play an important role in morbidity and mortality. Data regarding their prevalence in ACHD that are representative on a population level are not available. Methods: The German National Register for Congenital Heart Defects was screened for ACHD. Underlying congenital heart disease (CHD), patient demographics, previous interventional/surgical interventions, and comorbidities were retrieved. Patients <40 years of age were compared to those ≥40 years. Results: A total of 4673 patients (mean age 33.6 ± 10.7 years, female 47.7%) was included. At least one comorbidity was present in 2882 patients (61.7%) altogether, and in 56.8% of patients below vs. 77.7% of patients over 40 years of age (p < 0.001). Number of comorbidities was higher in patients ≥40 years (2.1 ± 2.1) than in patients <40 years (1.2 ± 1.5, p < 0.001). On multivariable regression analysis, age and CHD complexity were significantly associated with the presence and number of comorbidities. Conclusions: At least one acquired comorbidity is present in approximately two-thirds of ACHD. Age and complexity of the CHD are significantly associated with the presence of comorbidities. These findings highlight the importance of addressing comorbidities in ACHD care to achieve optimal long-term outcomes.