Refine
Year of publication
- 2002 (1)
Document Type
- Doctoral Thesis (1)
Language
- German (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
Mit Hilfe der direkten Nachweismethode von Singulettsauerstoff über die 1O2-Phosphoreszenzemission bei 1270 nm wurden zeitabhängige Messungen durchgeführt, mit denen größtenteils die jeweiligen Reaktionsmechanismen der Perhydrolyse von Nitrilen, Chlorameisensäureestern und Acetamid sowie von Natriumcyanat und teilweise von Benzoylsäurechloriden ermittelt werden konnten. Über den Mechanismus der erstmals von Radziszewski durchgeführten Reaktion von Wasserstoffperoxid mit Nitrilen (Radziszewski 1885) bestand bis heute noch keine endgültige Gewißheit. Es konnte nun gezeigt werden, daß im Gegensatz zu dem bisher allgemein akzeptierten Mechanismus von Wiberg (Wiberg 1953) der geschwindigkeitsbestimmende Schritt in wäßriger alkalischer Lösung der heterolytische Zerfall der intermediär gebildeten Peroxoiminosäure ist. Diese Zerfallsreaktion läuft nach einer Reaktion zweiter Ordnung ab und ist stark vorn pN-Wert abhängig. Durch die ph-Abhängigkeit konnten erstmals sowohl die pKs-Werte sowie auch die heterolytischen Zerfallskonstanten kZ, der untersuchten Peroxoiminosäuren abgeschätzt werden. In Gegenwart eines Ketons wird diese Reaktion bei Verwendung von Acetonitril stark beschleunigt. Verwendet man reaktivere Ketone wie zum Beispiel Fluoraceton wird das Zeitgesetz so komplex, daß eine quantitative Auswertung allein anhand der Singulettsauerstoffbildung nicht mehr möglich ist. Im Rahmen der Untersuchung der Nitrile wurde auch die Perhydrolyse des anorganischen Natriumcyanats in alkalischer Pufferlösung untersucht. Der hierbei gefundene Mechanismus unterscheidet sich allerdings von dem der Nitrile. In der ersten Reaktion pseudo-erster Ordnung wird die bisher unbekannte Peroxocarbaminsäure (H2N-C(O)OOH) gebildet, die dann unter Bildung von Ammoniak und dem instabilen Kohlenstoffperoxid (C03) zerfällt. Kohlenstoffperoxid (C03) wird als die Verbindung angesehen, deren Zerfall zur Bildung von Kohlenstoffdioxid und Singulettsauerstoff führt. Bei der Perhydrolyse des Acetamids im basischen Bereich konnten nur bei einem großen Überschuß an Wasserstoffperoxid auswertbare 1O2-Phosphoreszenz-Zeit-Kurven gefunden werden. Weiterhin wurde in THF die Perhydrolyse einiger Chlorameisensäureester in Abwesenheit und Gegenwart von Pyridin studiert. Die Perhydrolyse der Ester führte in Abwesenheit von Pyridin überwiegend zur Ausbildung eines konstanten 1O2-Phosphoreszenzsignal, dem Soge nannten "Chloridsignal", das eindeutig auf die in saurer Lösung durch Chloridionen katalysierte Zerfallsreaktion von Wasserstoffperoxid zurückzuführen ist. Die Induktionszeit, das heißt die Zeit nach der ein Singulettsauerstoffsignal beobachtet wird, korreliert mit der Stärke der elektronenziehenden Estergruppe. Wird die Perhydrolyse der genannten Ester in Gegenwart von Pyridin untersucht, wird die Reaktion bei dem Chlorameisensäuremethylester (CAME), dem Chlorameisensäureethylester (CAEE), dem Chlorameisensäurebenzylester (CABE) und dem Chlorameisensäure-4-nitrobenzylester (CANBE) durch Pyridin sehr stark beschleunigt. Nach Zugabe von Pyridin wird ohne lnduktionsperiode ein intensives 1O2-Phosphoreszenzsignal beobachtet, das nach einer Reaktion pseudo-erster Ordnung abklingt. Vermutlich wird bei den genannten Estern intermediär das N-Peroxocarboxylpvridiniumkation gebildet, welches auf Grund des in alpha-Stellung zur Peroxocarhoxylgruppe stehenden positiv geladenen Stickstoffatoms ein starkes Oxidationsmittel ist. Ferner wurde die Umsetzung von Säurechloriden mit Wasserstoffperoxid untersucht, bei der ebenfalls intermediär eine Peroxosäure gebildet wird, Jedoch war es nicht möglich, den Reaktionsmechanismus tatsächlich aufzuklären.