Refine
Year of publication
Document Type
- Article (14)
- Conference Proceeding (2)
- Doctoral Thesis (1)
Language
- English (17)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- HADES (2)
- anisotropic azimuthal correlation (2)
- directed flow (2)
- elliptic flow (2)
- heavy ion collisions (2)
- Baryonic resonances (1)
- Cherenkov counter: lead-glass (1)
- Flow (1)
- Freezeout (1)
- Heavy-ion Collisions (1)
Institute
Collective flow phenomena are a sensitive probe for the properties of extreme QCD matter. However, their interpretation relies on the understanding of the initial conditions e.g. the eccentricity of the nuclear overlap region. HADES [1] provides a large acceptance combined with a high mass-resolution and therefore allows to study di-electron and hadron production in heavy-ion collisions with unprecedented precision. In this contribution, the capability of HADES to study flow harmonics by utilizing multi-particle azimuthal correlation techniques is discussed. Due to the high statistics of seven billion Au+Au collisions at 1.23 AGeV collected in 2012, a systematic study of higher-order flow harmonics, the differentiation between collective and non-flow effects, and as well the multi-differential (pt, rapidity, centrality) analysis is possible.
Electromagnetic calorimeter (ECAL) is being developed to complement dilepton spectrometer HADES. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 AGeV on the beam of future accelerator SIS100@FAIR. We will report results of the last beam test with quasi-monoenergetic photons carried out in MAMI facility at Johannes Gutenberg Universität Mainz.
We estimate the feeddown contributions from decays of unstable A=4 and A=5 nuclei to the final yields of protons, deuterons, tritons, 3He, and 4He produced in relativistic heavy-ion collisions at sNN>2.4 GeV, using the statistical model. The feeddown contribution effects do not exceed 5% at LHC and top RHIC energies due to the large penalty factors involved, but are substantial at intermediate collision energies. We observe large feeddown contributions for tritons, 3He, and 4He at sNN≲10 GeV, where they may account for as much as 70% of the final yield at the lower end of the collision energies considered. Sizable (>10%) effects for deuteron yields are observed at sNN≲4 GeV. The results suggest that the excited nuclei feeddown cannot be neglected in the ongoing and future analysis of light nuclei production at intermediate collision energies, including HADES and CBM experiments at FAIR, NICA at JINR, RHIC beam energy scan and fixed-target programmes, and NA61/SHINE at CERN. We further show that the freeze-out curve in the T-μB plane itself is affected significantly by the light nuclei at high baryochemical potential.
In this letter we report the first multi-differential measurement of correlated pion-proton pairs from 2 billion Au+Au collisions at sNN=2.42 GeV collected with HADES. In this energy regime the population of Δ(1232) resonances plays an important role in the way energy is distributed between intrinsic excitation energy and kinetic energy of the hadrons in the fireball. The triple differential d3N/dMπ±pdpTdy distributions of correlated π±p pairs have been determined by subtracting the πp combinatorial background using an iterative method. The invariant-mass distributions in the Δ(1232) mass region show strong deviations from a Breit-Wigner function with vacuum width and mass. The yield of correlated pion-proton pairs exhibits a complex isospin, rapidity and transverse-momentum dependence. In the invariant mass range 1.1<Minv(GeV/c2)<1.4, the yield is found to be similar for π+p and π−p pairs, and to follow a power law 〈Apart〉α, where 〈Apart〉 is the mean number of participating nucleons. The exponent α depends strongly on the pair transverse momentum (pT) while its pT-integrated and charge-averaged value is α=1.5±0.08st±0.2sy.
We present the results of two-pion production in tagged quasi-free np collisions at a deutron incident beam energy of 1.25 GeV/c measured with the High-Acceptance Di-Electron Spectrometer (HADES) installed at GSI. The specific acceptance of HADES allowed for the first time to obtain high-precision data on π+π− and π−π0 production in np collisions in a region corresponding to large transverse momenta of the secondary particles. The obtained differential cross section data provide strong constraints on the production mechanisms and on the various baryon resonance contributions (∆∆, N(1440), N(1520), ∆(1600)). The invariant mass and angular distributions from the np → npπ+π −and np → ppπ−π0 reactions are compared with different theoretical model predictions.
We present first data on sub-threshold production of Ks0 mesons and Λ hyperons in Au+Au collisions at sNN=2.4 GeV. We observe an universal 〈Apart〉 scaling of hadrons containing strangeness, independent of their corresponding production thresholds. Comparing the yields, their 〈Apart〉 scaling, and the shapes of the rapidity and the pt spectra to state-of-the-art transport model (UrQMD, HSD, IQMD) predictions, we find that none of them can simultaneously describe these observables with reasonable χ2 values.
We investigate identical pion HBT intensity interferometry in central Au+Au collisions at 1.23A GeV. High-statistics π−π− and π+π+ data are measured with HADES at SIS18/GSI. The radius parameters, derived from the correlation function depending on relative momenta in the longitudinally comoving system and parametrized as three-dimensional Gaussian distribution, are studied as function of transverse momentum. A substantial charge-sign difference of the source radii is found, particularly pronounced at low transverse momentum. The extracted source parameters agree well with a smooth extrapolation of the center-of-mass energy dependence established at higher energies, extending the corresponding excitation functions down towards a very low energy.
In this thesis, the flow coefficients vn of the orders n = 1 − 6 are studied for protons and light nuclei in Au+Au collisions at Ebeam = 1.23 AGeV, equivalent to a center-of-mass energy in the nucleon-nucleon system of √sNN = 2.4 GeV. The detailed multi-differential measurement is performed with the HADES experiment at SIS18/GSI. HADES, with its large acceptance, covering almost full azimuth angle, combined with its high mass-resolution and good particle-identification capability, is well equipped to study the azimuthal flow pattern not only for protons, deuterons, and tritons but also for charged pions, kaons, the φ-mesons, electrons/positrons, as well as light nuclei like helions and alphas. The high statistics of more than seven billion Au-Au collisions recorded in April/May 2012 with HADES enables for the first time the measurement of higher order flow coefficients up to the 6th harmonic. Since the Fourier coefficient of 7th and 8th order are beyond the statistical significance only an upper bound is given. The Au+Au collision system is the largest reaction system with the highest particle multiplicities, which was measured so far with HADES. A dedicated correction method for the flow measurement had to be developed to cope with the reconstruction in-efficiencies due to occupancies of the detector system. The systematical bias of the flow measurement is studied and several sources of uncertainties identified, which mainly arise from the quality selection criteria applied to the analyzed tracks, the correction procedure for reconstruction inefficiencies, the procedures for particle identification (PID) and the effects of an azimuthally non-uniform detector acceptance. The systematic point-to-point uncertainties are determined separately for each particle type (proton, deuteron and triton), the order of the flow harmonics vn, and the centrality class. Further, the validity of the results is inspected in the range of their evaluated systematic uncertainties with several consistency checks. In order to enable meaningful comparisons between experimental observations and predictions of theoretical models, the classification of events should be well defined and in sufficiently narrow intervals of impact parameter. Part of this work included the implementation of the procedure to determine the centrality and orientation of the reaction.
In the conclusion the experimental results are discussed, including various scaling properties of the flow harmonics. It is found that the ratio v4/v2 for protons and light nuclei (deuterons and tritons) at midrapidity for all centrality classes approaches values close to 0.5 at high transverse momenta, which was suggested to be indicative for an ideal hydrodynamic behaviour. A remarkable scaling is observed in the pt dependence of v2 (v4) at mid-rapidity of the three hydrogen isotopes, when dividing by their nuclear mass number A (A^2) and pt by A. This is consistent with naive expectations from nucleon coalescence, butraises the question whether this mass ordering can also be explained by a hydrodynamical-inspired approach, like the blast-wave model. The relation of v2 and v4 to the shape of the initial eccentricity of the collision system is studied. It is found that v2 is independent of centrality for all three particle species after dividing it by the averaged second order participant eccentricity v2/⟨ε2⟩. A similar scaling is shown for v4 after division by ⟨ε2⟩^2.
In March 2019 the HADES experiment recorded 14 billion Ag+Ag collisions at √sNN = 2.55 GeV as a part of the FAIR phase-0 physics program. In this contribution, we present and investigate our capabilities to reconstruct and analyze weakly decaying strange hadrons and hypernuclei emerging from these collisions. The focus is put on measuring the mean lifetimes of these particles.
The production of Σ0 baryons in the nuclear reaction p (3.5 GeV) + Nb (corresponding to sNN=3.18 GeV) is studied with the detector set-up HADES at GSI, Darmstadt. Σ0s were identified via the decay Σ0→Λγ with subsequent decays Λ→pπ− in coincidence with a e+e− pair from either external (γ→e+e−) or internal (Dalitz decay γ⁎→e+e−) gamma conversions. The differential Σ0 cross section integrated over the detector acceptance, i.e. the rapidity interval 0.5<y<1.1, has been extracted as ΔσΣ0=2.3±(0.2)stat±(−0.6+0.6)sys±(0.2)norm mb, yielding the inclusive production cross section in full phase space σΣ0total=5.8±(0.5)stat±(−1.4+1.4)sys±(0.6)norm±(1.7)extrapol mb by averaging over different extrapolation methods. The Λall/Σ0 ratio within the HADES acceptance is equal to 2.3±(0.2)stat±(−0.6+0.6)sys. The obtained rapidity and momentum distributions are compared to transport model calculations. The Σ0 yield agrees with the statistical model of particle production in nuclear reactions. Keywords: Hyperons, Strangeness, Proton, Nucleus.