Refine
Document Type
- Article (2)
- Preprint (1)
- Working Paper (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Market Fragmentation (1)
- Market Microstructure (1)
- Market Quality (1)
- PD-1 (1)
- PD-L1 (1)
- SME Trading (1)
- Securities Market Regulation (1)
- brain metastases (1)
- tumor-infiltrating lymphocytes (1)
Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex.
White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA Epilepsy study
(2019)
The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analyzed from 1,069 non-epileptic controls and 1,249 patients: temporal lobe epilepsy with hippocampal sclerosis (N=599), temporal lobe epilepsy with normal MRI (N=275), genetic generalized epilepsy (N=182) and nonlesional extratemporal epilepsy (N=193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fiber tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at p<0.001). Across “all epilepsies” lower fractional anisotropy was observed in most fiber tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. Less robust effects were seen with mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Those with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced differences in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and in mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of microstructural abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibers in a large multicentre study of epilepsy. Overall, epilepsy patients showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding new insights into pathological substrates that may be used to guide future therapeutic and genetic studies.
We analyze how market fragmentation affects market quality of SME and other less actively traded stocks. Compared to large stocks, they are less likely to be traded on multiple venues and show, if at all, low levels of fragmentation. Concerning the impact of fragmentation on market quality, we find evidence for a hockey stick effect: Fragmentation has no effect for infrequently traded stocks, a negative effect on liquidity of slightly more active stocks, and increasing benefits for liquidity of large and actively traded stocks. Consequently, being traded on multiple venues is not necessarily harmful for SME stock market quality.
Regulatory impact analysis (RIA) serves to evaluate whether regulatory actions fulfill the desired goals. Although there are different frameworks for conducting RIA, they are only applicable to regulations whose impact can be measured with structured data. Yet, a significant and increasing number of regulations require firms to comply by communicating textual data to consumers and supervisors. Therefore, we develop a methodological framework for RIA in case of unstructured data based on textual analysis and apply it to a recent financial market regulation: MiFID II.