Refine
Document Type
- Preprint (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
- Informatik (2)
Grasping the meaning of everyday visual events is a fundamental feat of human intelligence that hinges on diverse neural processes ranging from vision to higher-level cognition. Deciphering the neural basis of visual event understanding requires rich, extensive, and appropriately designed experimental data. However, this type of data is hitherto missing. To fill this gap, we introduce the BOLD Moments Dataset (BMD), a large dataset of whole-brain fMRI responses to over 1,000 short (3s) naturalistic video clips and accompanying metadata. We show visual events interface with an array of processes, extending even to memory, and we reveal a match in hierarchical processing between brains and video-computable deep neural networks. Furthermore, we showcase that BMD successfully captures temporal dynamics of visual events at second resolution. BMD thus establishes a critical groundwork for investigations of the neural basis of visual event understanding.
Studying the neural basis of human dynamic visual perception requires extensive experimental data to evaluate the large swathes of functionally diverse brain neural networks driven by perceiving visual events. Here, we introduce the BOLD Moments Dataset (BMD), a repository of whole-brain fMRI responses to over 1,000 short (3s) naturalistic video clips of visual events across ten human subjects. We use the videos’ extensive metadata to show how the brain represents word- and sentence-level descriptions of visual events and identify correlates of video memorability scores extending into the parietal cortex. Furthermore, we reveal a match in hierarchical processing between cortical regions of interest and video-computable deep neural networks, and we showcase that BMD successfully captures temporal dynamics of visual events at second resolution. With its rich metadata, BMD offers new perspectives and accelerates research on the human brain basis of visual event perception.