Refine
Year of publication
Document Type
- Article (103)
- Conference Proceeding (1)
Language
- English (104)
Has Fulltext
- yes (104)
Is part of the Bibliography
- no (104)
Keywords
- inflammation (18)
- macrophage (16)
- cancer (7)
- macrophages (7)
- breast cancer (6)
- apoptosis (5)
- lipocalin-2 (5)
- macrophage polarization (5)
- sphingosine-1-phosphate (5)
- hypoxia (4)
Institute
- Medizin (101)
- Sonderforschungsbereiche / Forschungskollegs (36)
- Biochemie und Chemie (14)
- Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit (ZAFES) (6)
- Biochemie, Chemie und Pharmazie (3)
- Exzellenzcluster Makromolekulare Komplexe (2)
- Pharmazie (2)
- Biowissenschaften (1)
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (1)
- Institut für Ökologie, Evolution und Diversität (1)
Introduction: Immune paralysis with massive T-cell apoptosis is a central pathogenic event during sepsis and correlates with septic patient mortality. Previous observations implied a crucial role of peroxisome proliferator-activated receptor gamma (PPARγ) during T-cell apoptosis.
Methods: To elucidate mechanisms of PPARγ-induced T-cell depletion, we used an endotoxin model as well as the caecal ligation and puncture sepsis model to imitate septic conditions in wild-type versus conditional PPARγ knockout (KO) mice.
Results: PPARγ KO mice showed a marked survival advantage compared with control mice. Their T cells were substantially protected against sepsis-induced death and showed a significantly higher expression of the pro-survival factor IL-2. Since PPARγ is described to repress nuclear factor of activated T cells (NFAT) transactivation and concomitant IL-2 expression, we propose inhibition of NFAT as the underlying mechanism allowing T-cell apoptosis. Corroborating our hypothesis, we observed up-regulation of the pro-apoptotic protein BIM and downregulation of the anti-apoptotic protein Bcl-2 in control mice, which are downstream effector proteins of IL-2 receptor signaling. Application of a neutralizing anti-IL-2 antibody reversed the pro-survival effect of PPARγ-deficient T cells and confirmed IL-2-dependent apoptosis during sepsis.
Conclusion: Apparently antagonizing PPARγ in T cells might improve their survival during sepsis, which concomitantly enhances defence mechanisms and possibly provokes an increased survival of septic patients.
The sphingolipid sphingosine-1-phosphate (S1P) emerges as an important regulator of immunity, mainly by signaling through a family of five specific G protein-coupled receptors (S1PR1–5). While S1P signaling generally has the potential to affect not only trafficking but also differentiation, activation, and survival of a diverse range of immune cells, the specific outcome depends on the S1P receptor repertoire expressed on a given cell. Among the S1PRs, S1PR4 is specifically abundant in immune cells, suggesting a major role of the S1P/S1PR4 axis in immunity. Recent studies indeed highlight its role in activation of immune cells, differentiation, and, potentially, trafficking. In this review, we summarize the emerging data that support a major role of S1PR4 in modulating immunity in humans and mice and discuss therapeutic implications.
Natural Killer T cells (NKT cells) are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA) on type I NKT cells in polyoma middle T oncogene-driven (PyMT) murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1) were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity.
S1P provokes tumor lymphangiogenesis via macrophage-derived mediators such as IL-1β or lipocalin-2
(2017)
A pleiotropic signaling lipid, sphingosine-1-phosphate (S1P), has been implicated in various pathophysiological processes supporting tumor growth and metastasis. However, there are only a few descriptive studies suggesting a role of S1P in tumor lymphangiogenesis, which is critical for tumor growth and dissemination. Corroborating own data, the literature suggests that apoptotic tumor cell-derived S1P alters the phenotype of tumor-associated macrophages (TAMs) to gain protumor functions. However, mechanistically, the role of TAM-induced lymphangiogenesis has only been poorly described, mostly linked to the production of lymphangiogenic factors such as vascular endothelial growth factor C (VEGF-C) and VEGF-D, or transdifferentiation into lymphatic endothelial cells. Recent findings highlight a rather underappreciated role of S1P in tumor lymphangiogenesis, referring to the production of interleukin-1β (IL-1β) and lipocalin-2 (LCN2) by a tumor-promoting macrophage phenotype. In this review, we aim to provide to the readers with the current understanding of the molecular mechanism how apoptotic cell-derived S1P triggers TAMs to promote lymphangiogenesis.
Hypoxia triggers several mechanisms to adapt cells to a low oxygen environment. Mitochondria are major consumers of oxygen and a potential source of reactive oxygen species (ROS). In response to hypoxia they exchange or modify distinct subunits of the respiratory chain and adjust their metabolism, especially lowering the citric acid cycle. Intermediates of the citric acid cycle participate in regulating hypoxia inducible factors (HIF), the key mediators of adaptation to hypoxia. Here we summarize how hypoxia conditions mitochondria with consequences for ROS-production and the HIF-pathway.
Ischemia/reperfusion (I/R) is at the basis of renal transplantation and acute kidney injury. Molecular mechanisms underlying proximal tubule response to I/R will allow the identification of new therapeutic targets for both clinical settings. microRNAs have emerged as crucial and tight regulators of the cellular response to insults including hypoxia. Here, we have identified several miRNAs involved in the response of the proximal tubule cell to I/R. Microarrays and RT-PCR analysis of proximal tubule cells submitted to I/R mimicking conditions in vitro demonstrated that miR-127 is induced during ischemia and also during reperfusion. miR-127 is also modulated in a rat model of renal I/R. Interference approaches demonstrated that ischemic induction of miR-127 is mediated by Hypoxia Inducible Factor-1alpha (HIF-1α) stabilization. Moreover, miR-127 is involved in cell-matrix and cell-cell adhesion maintenance, since overexpression of miR-127 maintains focal adhesion complex assembly and the integrity of tight junctions. miR-127 also regulates intracellular trafficking since miR-127 interference promotes dextran-FITC uptake. In fact, we have identified the Kinesin Family Member 3B (KIF3B), involved in cell trafficking, as a target of miR-127 in rat proximal tubule cells. In summary, we have described a novel role of miR-127 in cell adhesion and its regulation by HIF-1α. We also identified for the first time KIF3B as a miR-127 target. Both, miR-127 and KIF3B appear as key mediators of proximal epithelial tubule cell response to I/R with potential al application in renal ischemic damage management.
Bacterial and fungal toll-like receptor activation elicits type I IFN responses in mast cells
(2021)
Next to their role in IgE-mediated allergic diseases and in promoting inflammation, mast cells also have antiinflammatory functions. They release pro- as well as antiinflammatory mediators, depending on the biological setting. Here we aimed to better understand the role of mast cells during the resolution phase of a local inflammation induced with the Toll-like receptor (TLR)-2 agonist zymosan. Multiple sequential immunohistology combined with a statistical neighborhood analysis showed that mast cells are located in a predominantly antiinflammatory microenvironment during resolution of inflammation and that mast cell-deficiency causes decreased efferocytosis in the resolution phase. Accordingly, FACS analysis showed decreased phagocytosis of zymosan and neutrophils by macrophages in mast cell-deficient mice. mRNA sequencing using zymosan-induced bone marrow-derived mast cells (BMMC) revealed a strong type I interferon (IFN) response, which is known to enhance phagocytosis by macrophages. Both, zymosan and lipopolysaccharides (LPS) induced IFN-β synthesis in BMMCs in similar amounts as in bone marrow derived macrophages. IFN-β was expressed by mast cells in paws from naïve mice and during zymosan-induced inflammation. As described for macrophages the release of type I IFNs from mast cells depended on TLR internalization and endosome acidification. In conclusion, mast cells are able to produce several mediators including IFN-β, which are alone or in combination with each other able to regulate the phagocytotic activity of macrophages during resolution of inflammation.
Despite the progress to understand inflammatory reactions, mechanisms causing their resolution remain poorly understood. Prostanoids, especially prostaglandin E2 (PGE2), are well-characterized mediators of inflammation. PGE2 is produced in an inducible manner in macrophages (Mϕ) by microsomal PGE2-synthase-1 (mPGES-1), with the notion that it also conveys pro-resolving properties. We aimed to characterize the role of mPGES-1 during resolution of acute, zymosan-induced peritonitis. Experimentally, we applied the mPGES-1 inhibitor compound III (CIII) once the inflammatory response was established and confirmed its potent PGE2-blocking efficacy. mPGES-1 inhibition resulted in an incomplete removal of neutrophils and a concomitant increase in monocytes and Mϕ during the resolution process. The mRNA-seq analysis identified enhanced C-X3-C motif receptor 1 (CX3CR1) expression in resident and infiltrating Mϕ upon mPGES-1 inhibition. Besides elevated Cx3cr1 expression, its ligand CX3CL1 was enriched in the peritoneal lavage of the mice, produced by epithelial cells upon mPGES-1 inhibition. CX3CL1 not only increased adhesion and survival of Mϕ but its neutralization also completely reversed elevated inflammatory cell numbers, thereby normalizing the cellular, peritoneal composition during resolution. Our data suggest that mPGES-1-derived PGE2 contributes to the resolution of inflammation by preventing CX3CL1-mediated retention of activated myeloid cells at sites of injury.
Background: Glucose metabolism in the tumor-microenvironment is a fundamental hallmark for tumor growth and intervention therein remains an attractive option for anti-tumor therapy. Whether tumor-derived factors such as microRNAs (miRs) regulate glucose metabolism in stromal cells, especially in tumor-associated macrophages (TAMs), to hijack them for trophic support, remains elusive.
Methods: Ago-RIP-Seq identified macrophage lactate dehydrogenase B (LDHB) as a target of tumor-derived miR-375 in both 2D/3D cocultures and in murine TAMs from a xenograft mouse model. The prognostic value was analyzed by ISH and multiplex IHC of breast cancer patient tissues. Functional consequences of the miR-375-LDHB axis in TAMs were investigated upon mimic/antagomir treatment by live metabolic flux assays, GC/MS, qPCR, Western blot, lentiviral knockdown and FACS. The therapeutic potential of a combinatorial miR-375-decoy/simvastatin treatment was validated by live cell imaging.
Results: Macrophage LDHB decreased in murine and human breast carcinoma. LDHB downregulation increase aerobic glycolysis and lactagenesis in TAMs in response to tumor-derived miR-375. Lactagenesis reduced fatty acid synthesis but activated SREBP2, which enhanced cholesterol biosynthesis in macrophages. LDHB downregulation skewed TAMs to function as a lactate and sterol/oxysterol source for the proliferation of tumor cells. Restoring of LDHB expression potentiated inhibitory effects of simvastatin on tumor cell proliferation.
Conclusion: Our findings identified a crucial role of LDHB in macrophages and established tumor-derived miR-375 as a novel regulator of macrophage metabolism in breast cancer, which might pave the way for strategies of combinatorial cancer cell/stroma cell interventions.
Background: Microarray analysis still remains a powerful tool to identify new components of the transcriptosome and it has helped to increase the knowledge of targets triggered by stress conditions such as hypoxia and nitric oxide. However, analysis of transcriptional regulatory events remain elusive due to the contribution of altered mRNA stability to gene expression patterns, as well as changes in the half-life of mRNAs, which influence mRNA expression levels and their turn over rates. To circumvent these problems, we have focused on the analysis of newly transcribed (nascent) mRNAs by nuclear run on (NRO), followed by microarray analysis. Result: We identified 188 genes that were significantly regulated by hypoxia, 81 genes were affected by nitric oxide, and 292 genes were induced by the co-treatment of macrophages with both NO and hypoxia. Fourteen genes (Bnip3, Ddit4, Vegfa, Trib3, Atf3, Cdkn1a, Scd1, D4Ertd765e, Sesn2, Son, Nnt, Lst1, Hps6 and Fxyd5) were common to hypoxia and/or nitric oxide treatments, but with different levels of expression. We observed that 166 transcripts were regulated only when cells were co-treated with hypoxia and NO but not with either treatment alone, pointing to the importance of a crosstalk between hypoxia and NO. In addition, both array and proteomics data supported a consistent repression of hypoxia regulated targets by NO. Conclusion: By eliminating the interference of steady state mRNA in gene expression profiling, we increased the sensitivity of mRNA analysis and identified previously unknown hypoxia-induced targets. Gene analysis profiling corroborated the interplay between NO- and hypoxia-induced signalling.