Refine
Year of publication
Document Type
- Article (71)
Language
- English (71)
Has Fulltext
- yes (71)
Is part of the Bibliography
- no (71)
Keywords
- inflammation (13)
- macrophage (11)
- breast cancer (5)
- cancer (5)
- macrophage polarization (5)
- macrophages (5)
- apoptosis (4)
- lipocalin-2 (4)
- mitochondria (4)
- sphingosine-1-phosphate (4)
A growing body of evidence suggests that macrophage polarization dictates the expression of iron-regulated genes. Polarization towards iron sequestration depletes the microenvironment, whereby extracellular pathogen growth is limited and inflammation is fostered. In contrast, iron release contributes to cell proliferation, which is important for tissue regeneration. Moreover, macrophages constitute a major component of the infiltrates in most solid tumors. Considering the pivotal role of macrophages for iron homeostasis and their presence in association with poor clinical prognosis in tumors, we approached the possibility to target macrophages with intracellular iron chelators. Analyzing the expression of iron-regulated genes at mRNA and protein level in primary human macrophages, we found that the iron-release phenotype is a characteristic of polarized macrophages that, in turn, stimulate tumor cell growth and progression. The application of the intracellular iron chelator (TC3-S)2 shifted the macrophage phenotype from iron release towards sequestration, as determined by the iron-gene profile and atomic absorption spectroscopy (AAS). Moreover, whereas the addition of macrophage supernatants to tumor cells induced tumor growth and metastatic behavior, the supernatant of chelator-treated macrophages reversed this effect. Iron chelators demonstrated potent anti-neoplastic properties in a number of cancers, both in cell culture and in clinical trials. Our results suggest that iron chelation could affect not only cancer cells but also the tumor microenvironment by altering the iron-release phenotype of tumor-associated macrophages (TAMs). The study of iron chelators in conjunction with the effect of TAMs on tumor growth could lead to an improved understanding of the role of iron in cancer biology and to novel therapeutic avenues for iron chelation approaches.
Background: Microarray analysis still remains a powerful tool to identify new components of the transcriptosome and it has helped to increase the knowledge of targets triggered by stress conditions such as hypoxia and nitric oxide. However, analysis of transcriptional regulatory events remain elusive due to the contribution of altered mRNA stability to gene expression patterns, as well as changes in the half-life of mRNAs, which influence mRNA expression levels and their turn over rates. To circumvent these problems, we have focused on the analysis of newly transcribed (nascent) mRNAs by nuclear run on (NRO), followed by microarray analysis. Result: We identified 188 genes that were significantly regulated by hypoxia, 81 genes were affected by nitric oxide, and 292 genes were induced by the co-treatment of macrophages with both NO and hypoxia. Fourteen genes (Bnip3, Ddit4, Vegfa, Trib3, Atf3, Cdkn1a, Scd1, D4Ertd765e, Sesn2, Son, Nnt, Lst1, Hps6 and Fxyd5) were common to hypoxia and/or nitric oxide treatments, but with different levels of expression. We observed that 166 transcripts were regulated only when cells were co-treated with hypoxia and NO but not with either treatment alone, pointing to the importance of a crosstalk between hypoxia and NO. In addition, both array and proteomics data supported a consistent repression of hypoxia regulated targets by NO. Conclusion: By eliminating the interference of steady state mRNA in gene expression profiling, we increased the sensitivity of mRNA analysis and identified previously unknown hypoxia-induced targets. Gene analysis profiling corroborated the interplay between NO- and hypoxia-induced signalling.
Introduction: Immune paralysis with massive T-cell apoptosis is a central pathogenic event during sepsis and correlates with septic patient mortality. Previous observations implied a crucial role of peroxisome proliferator-activated receptor gamma (PPARγ) during T-cell apoptosis.
Methods: To elucidate mechanisms of PPARγ-induced T-cell depletion, we used an endotoxin model as well as the caecal ligation and puncture sepsis model to imitate septic conditions in wild-type versus conditional PPARγ knockout (KO) mice.
Results: PPARγ KO mice showed a marked survival advantage compared with control mice. Their T cells were substantially protected against sepsis-induced death and showed a significantly higher expression of the pro-survival factor IL-2. Since PPARγ is described to repress nuclear factor of activated T cells (NFAT) transactivation and concomitant IL-2 expression, we propose inhibition of NFAT as the underlying mechanism allowing T-cell apoptosis. Corroborating our hypothesis, we observed up-regulation of the pro-apoptotic protein BIM and downregulation of the anti-apoptotic protein Bcl-2 in control mice, which are downstream effector proteins of IL-2 receptor signaling. Application of a neutralizing anti-IL-2 antibody reversed the pro-survival effect of PPARγ-deficient T cells and confirmed IL-2-dependent apoptosis during sepsis.
Conclusion: Apparently antagonizing PPARγ in T cells might improve their survival during sepsis, which concomitantly enhances defence mechanisms and possibly provokes an increased survival of septic patients.
Clonal hematopoiesis of indeterminate potential (CHIP) is caused by recurrent somatic mutations leading to clonal blood cell expansion. However, direct evidence of the fitness of CHIP-mutated human hematopoietic stem cells (HSCs) in blood reconstitution is lacking. Because myeloablative treatment and transplantation enforce stress on HSCs, we followed 81 patients with solid tumors or lymphoid diseases undergoing autologous stem cell transplantation (ASCT) for the development of CHIP. We found a high incidence of CHIP (22%) after ASCT with a high mean variant allele frequency (VAF) of 10.7%. Most mutations were already present in the graft, albeit at lower VAFs, demonstrating a selective reconstitution advantage of mutated HSCs after ASCT. However, patients with CHIP mutations in DNA-damage response genes showed delayed neutrophil reconstitution. Thus, CHIP-mutated stem and progenitor cells largely gain on clone size upon ASCT-related blood reconstitution, leading to an increased future risk of CHIP-associated complications.
Macrophages are highly versatile cells, which acquire, depending on their microenvironment, pro- (M1-like), or antiinflammatory (M2-like) phenotypes. Here, we studied the role of the G-protein coupled receptor G2A (GPR132), in chemotactic migration and polarization of macrophages, using the zymosan-model of acute inflammation. G2A-deficient mice showed a reduced zymosan-induced thermal hyperalgesia, which was reversed after macrophage depletion. Fittingly, the number of M1-like macrophages was reduced in the inflamed tissue in G2A-deficient mice. However, G2A activation was not sufficient to promote M1-polarization in bone marrow-derived macrophages. While the number of monocyte-derived macrophages in the inflamed paw was not altered, G2A-deficient mice had less macrophages in the direct vicinity of the origin of inflammation, an area marked by the presence of zymosan, neutrophil accumulation and proinflammatory cytokines. Fittingly neutrophil efferocytosis was decreased in G2A-deficient mice and several lipids, which are released by neutrophils and promote G2A-mediated chemotaxis, were increased in the inflamed tissue. Taken together, G2A is necessary to position macrophages in the proinflammatory microenvironment surrounding the center of inflammation. In absence of G2A the macrophages are localized in an antiinflammatory microenvironment and macrophage polarization is shifted toward M2-like macrophages.
The sphingolipid sphingosine‐1‐phosphate (S1P) fulfills distinct functions in immune cell biology via binding to five G protein‐coupled receptors. The immune cell‐specific sphingosine‐1‐phosphate receptor 4 (S1pr4) was connected to the generation of IL‐17‐producing T cells through regulation of cytokine production in innate immune cells. Therefore, we explored whether S1pr4 affected imiquimod‐induced murine psoriasis via regulation of IL‐17 production. We did not observe altered IL‐17 production, although psoriasis severity was reduced in S1pr4‐deficient mice. Instead, ablation of S1pr4 attenuated the production of CCL2, IL‐6, and CXCL1 and subsequently reduced the number of infiltrating monocytes and granulocytes. A connection between S1pr4, CCL2, and Mϕ infiltration was also observed in Zymosan‐A induced peritonitis. Boyden chamber migration assays functionally linked reduced CCL2 production in murine skin and attenuated monocyte migration when S1pr4 was lacking. Mechanistically, S1pr4 signaling synergized with TLR signaling in resident Mϕs to produce CCL2, likely via the NF‐κB pathway. We propose that S1pr4 activation enhances TLR response of resident Mϕs to increase CCL2 production, which attracts further Mϕs. Thus, S1pr4 may be a target to reduce perpetuating inflammatory responses.
Tight regulation of inflammation is very important to guarantee a balanced immune response without developing chronic inflammation. One of the major mediators of the resolution of inflammation is the transcription factor: the nuclear factor erythroid 2-like 2 (Nrf2). Stabilized following oxidative stress, Nrf2 induces the expression of antioxidants as well as cytoprotective genes, which provoke an anti-inflammatory expression profile, and is crucial for the initiation of healing. In view of this fundamental modulatory role, it is clear that both hyper- or hypoactivation of Nrf2 contribute to the onset of chronic diseases. Understanding the tight regulation of Nrf2 expression/activation and its interaction with signaling pathways, known to affect inflammatory processes, will facilitate development of therapeutic approaches to prevent Nrf2 dysregulation and ameliorate chronic inflammatory diseases. We discuss in this review the principle mechanisms of Nrf2 regulation with a focus on inflammation and autophagy, extending the role of dysregulated Nrf2 to chronic diseases and tumor development.
Natural Killer T cells (NKT cells) are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA) on type I NKT cells in polyoma middle T oncogene-driven (PyMT) murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1) were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity.
The interaction of macrophages with apoptotic cells is required for efficient resolution of inflammation. While apoptotic cell removal prevents inflammation due to secondary necrosis, it also alters the macrophage phenotype to hinder further inflammatory reactions. The interaction between apoptotic cells and macrophages is often studied by chemical or biological induction of apoptosis, which may introduce artifacts by affecting the macrophages as well and/or triggering unrelated signaling pathways. Here, we set up a pure cell death system in which NIH 3T3 cells expressing dimerizable Caspase-8 were co-cultured with peritoneal macrophages in a transwell system. Phenotype changes in macrophages induced by apoptotic cells were evaluated by RNA sequencing, which revealed an unexpectedly dominant impact on macrophage proliferation. This was confirmed in functional assays with primary peritoneal macrophages and IC-21 macrophages. Moreover, inhibition of apoptosis during Zymosan-induced peritonitis in mice decreased mRNA levels of cell cycle mediators in peritoneal macrophages. Proliferation of macrophages in response to apoptotic cells may be important to increase macrophage numbers in order to allow efficient clearance and resolution of inflammation.
IL-27 regulates inflammatory diseases by exerting a pleiotropic impact on immune cells. In cancer, IL-27 restricts tumor growth by acting on tumor cells directly, while its role in the tumor microenvironment is still controversially discussed. To explore IL-27 signaling in the tumor stroma, we used a mammary carcinoma syngraft approach in IL27Rα-deficient mice. Tumor growth in animals lacking IL27Rα was markedly reduced. We noticed a decrease in immune cell infiltrates, enhanced tumor cell death, and fibroblast accumulation. However, most striking changes pertain the tumor vasculature. Tumors in IL27Rα-deficient mice were unable to form functional vessels. Blocking IL-27-STAT1 signaling in endothelial cells in vitro provoked an overshooting migration/sprouting of endothelial cells. Apparently, the lack of the IL-27 receptor caused endothelial cell hyper-activation via STAT1 that limited vessel maturation. Our data reveal a so far unappreciated role of IL-27 in endothelial cells with importance in pathological vessel formation.