Refine
Year of publication
- 2021 (3)
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- SARS-CoV-2 (2)
- COVID-19 (1)
- Genetics (1)
- Genome-wide association studies (1)
- Viral infection (1)
- neurological manifestations (1)
Institute
- Medizin (3)
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
Background and purpose: During acute coronavirus disease 2019 (COVID-19) infection, neurological signs, symptoms and complications occur. We aimed to assess their clinical relevance by evaluating real-world data from a multinational registry. Methods: We analyzed COVID-19 patients from 127 centers, diagnosed between January 2020 and February 2021, and registered in the European multinational LEOSS (Lean European Open Survey on SARS-Infected Patients) registry. The effects of prior neurological diseases and the effect of neurological symptoms on outcome were studied using multivariate logistic regression. Results: A total of 6537 COVID-19 patients (97.7% PCR-confirmed) were analyzed, of whom 92.1% were hospitalized and 14.7% died. Commonly, excessive tiredness (28.0%), headache (18.5%), nausea/emesis (16.6%), muscular weakness (17.0%), impaired sense of smell (9.0%) and taste (12.8%), and delirium (6.7%) were reported. In patients with a complicated or critical disease course (53%) the most frequent neurological complications were ischemic stroke (1.0%) and intracerebral bleeding (ICB; 2.2%). ICB peaked in the critical disease phase (5%) and was associated with the administration of anticoagulation and extracorporeal membrane oxygenation (ECMO). Excessive tiredness (odds ratio [OR] 1.42, 95% confidence interval [CI] 1.20–1.68) and prior neurodegenerative diseases (OR 1.32, 95% CI 1.07–1.63) were associated with an increased risk of an unfavorable outcome. Prior cerebrovascular and neuroimmunological diseases were not associated with an unfavorable short-term outcome of COVID-19. Conclusion: Our data on mostly hospitalized COVID-19 patients show that excessive tiredness or prior neurodegenerative disease at first presentation increase the risk of an unfavorable short-term outcome. ICB in critical COVID-19 was associated with therapeutic interventions, such as anticoagulation and ECMO, and thus may be an indirect complication of a life-threatening systemic viral infection.
Correction to: Infection (2020) 48:723–733 https://doi.org/10.1007/s15010-020-01469-6. The original version of this article unfortunately contained a mistake. In this article the authors Dirk Schürmann at affiliation Charité, University Medicine, Berlin, Olaf Degen at affiliation University Clinic Hamburg Eppendorf, Hamburg and Heinz-August Horst at affiliation University Hospital Schleswig–Holstein, Kiel, Germany were missing from the author list. The original article has been corrected.