Refine
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Brudenell River (1)
- Canada (1)
- Community barcoding (1)
- Marine ecosystem (1)
- Oomycetes (1)
- Peronosporaceae (1)
- cox2 (1)
- forest tree (1)
- fungi (1)
- genomics (1)
Marine oomycetes are highly diverse, globally distributed, and play key roles in marine food webs as decomposers, food source, and parasites. Despite their potential importance in global ocean ecosystems, marine oomycetes are comparatively little studied. Here, we tested if the primer pair cox2F_Hud and cox2-RC4, which is already well-established for phylogenetic investigations of terrestrial oomycetes, can also be used for high-throughput community barcoding. Community barcoding of a plankton sample from Brudenell River (Prince Edward Island, Canada), revealed six distinct oomycete OTU clusters. Two of these clusters corresponded to members of the Peronosporaceae—one could be assigned to Peronospora verna, an obligate biotrophic pathogen of the terrestrial plant Veronica serpyllifolia and related species, the other was closely related to Globisporangium rostratum. While the detection of the former in the sample is likely due to long-distance dispersal from the island, the latter might be a bona fide marine species, as several cultivable species of the Peronosporaceae are known to withstand high salt concentrations. Two OTU lineages could be assigned to the Saprolegniaceae. While these might represent marine species of the otherwise terrestrial genus, it is also conceivable that they were introduced on detritus from the island. Two additional OTU clusters were grouped with the early-diverging oomycete lineages but could not be assigned to a specific family. This reflects the current underrepresentation of cox2 sequence data which will hopefully improve with the increasing interest in marine oomycetes.
The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.
The plant family Brassicaceae includes some of the most studied hosts of plant microbiomes, targeting microbial diversity, community assembly rules, and effects on host performance. Compared to bacteria, eukaryotes in the brassicaceous microbiome remain understudied, especially under natural settings. Here, we assessed the impact of host identity and age on the assembly of fungal and oomycete root communities, using DNA metabarcoding of roots and associated soil of three annual co-habiting Brassicaceae collected at two time points. Our results showed that fungal communities are more diverse and structured than those of oomycetes. In both cases, plant identity and sampling time had little influence on community variation, whereas root/soil compartment had a strong effect by exerting control on the entry of soil microorganisms into the roots. The enrichment in roots of specific fungi suggests a specialization towards the asymptomatic colonization of plant tissues, which could be relevant to host’s fitness and health.
Background: The European beech is arguably the most important climax broad-leaved tree species in Central Europe, widely planted for its valuable wood. Here, we report the 542 Mb draft genome sequence of an up to 300-year-old individual (Bhaga) from an undisturbed stand in the Kellerwald-Edersee National Park in central Germany.
Findings: Using a hybrid assembly approach, Illumina reads with short- and long-insert libraries, coupled with long Pacific Biosciences reads, we obtained an assembled genome size of 542 Mb, in line with flow cytometric genome size estimation. The largest scaffold was of 1.15 Mb, the N50 length was 145 kb, and the L50 count was 983. The assembly contained 0.12% of Ns. A Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis retrieved 94% complete BUSCO genes, well in the range of other high-quality draft genomes of trees. A total of 62,012 protein-coding genes were predicted, assisted by transcriptome sequencing. In addition, we are reporting an efficient method for extracting high-molecular-weight DNA from dormant buds, by which contamination by environmental bacteria and fungi was kept at a minimum.
Conclusions: The assembled genome will be a valuable resource and reference for future population genomics studies on the evolution and past climate change adaptation of beech and will be helpful for identifying genes, e.g., involved in drought tolerance, in order to select and breed individuals to adapt forestry to climate change in Europe. A continuously updated genome browser and download page can be accessed from beechgenome.net, which will include future genome versions of the reference individual Bhaga, as new sequencing approaches develop.