Refine
Year of publication
Document Type
- Article (20)
- Doctoral Thesis (1)
- Preprint (1)
Language
- English (22)
Has Fulltext
- yes (22)
Is part of the Bibliography
- no (22)
Keywords
- RNA (7)
- SARS-CoV-2 (7)
- COVID19-NMR (4)
- NMR spectroscopy (3)
- Solution NMR spectroscopy (3)
- 5′-UTR (2)
- NMR (2)
- Non-structural protein (2)
- Protein drugability (2)
- Solution NMR-spectroscopy (2)
Riboswitches are highly structured elements in the 50-untranslated regions (50-UTRs) of messenger RNA that control gene expression by specifically binding to small metabolite molecules. They consist of an aptamer domain responsible for ligand binding and an expression platform. Ligand binding in the aptamer domain leads to conformational changes in the expression platform that result in transcription termination or abolish ribosome binding. The guanine riboswitch binds with high-specificity to guanine and hypoxanthine and is among the smallest riboswitches described so far. The X-ray-structure of its aptamer domain in complex with guanine/ hypoxanthine reveals an intricate RNA-fold consisting of a three-helix junction stabilized by longrange base pairing interactions. We analyzed the conformational transitions of the aptamer domain induced by binding of hypoxanthine using highresolution NMR-spectroscopy in solution. We found that the long-range base pairing interactions are already present in the free RNA and preorganize its global fold. The ligand binding core region is lacking hydrogen bonding interactions and therefore likely to be unstructured in the absence of ligand. Mg2+-ions are not essential for ligand binding and do not change the structure of the RNA-ligand complex but stabilize the structure at elevated temperatures. We identified a mutant RNA where the long-range base pairing interactions are disrupted in the free form of the RNA but form upon ligand binding in an Mg2+-dependent fashion. The tertiary interaction motif is stable outside the riboswitch context.
We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C40 nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C10,H10 ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs. Keywords: NMR spectroscopy , Direct carbon , detection , RNA
The following thesis is concerned with the elucidation of structural changes of RNA molecules during the time course of dynamic processes that are commonly denoted as folding reactions. In contrast to the field of protein folding, the concept of RNA folding comprises not only folding reactions itself but also refolding- or conformational switching- and assembly processes (see chapter III). The method in this thesis to monitor these diverse processes is high resolution liquid-state NMR spectroscopy. To understand the reactions is of considerable interest, because most biological active RNA molecules function by changing their conformation. This can be either an intrinsic property of their respective sequence or may happen in response to a cellular signal such as small molecular ligand binding (like in the aptamer and riboswitch case), protein or metal binding. The first part of the thesis (chapters II & III) provides a general overview over the field of RNA structure and RNA folding. The two chapters aim at introducing the reader into the current status of research in the field. Chapters II is structured such that primary structure is first described then secondary and tertiary structure elements of RNA structure. A special emphasis is given to bistable RNA systems that are functionally important and represent models to understand fundamental questions of RNA conformational switching. RNA folding in vitro as well as in vivo situations is discussed in Chapter III. The following chapters IV and V also belong to the introduction part and review critically the NMR methods that were used to understand the nature and the dynamics of the conformational/structural transitions in RNA. A general overview of NMR methods quantifying dynamics of biomolecules is provided in chapter IV. A detailed discussion of solvent exchange rates and time-resolved NMR, as the two major techniques used, follows. In the final chapter V of the first part the NMR parameters used in structure calculation and structure calculation itself are conferred. The second part of the thesis, which is the cumulative part, encompasses the conducted original work. Chapter VI reviews the general NMR techniques applied and explains their applicability in the field of RNA structural and biochemical studies in several model cases. Chapter VII describes the achievement of a complete resonance assignment of an RNA model molecule (14mer cUUCGg tetral-loop RNA) and introduces a new technique to assign quaternary carbon resonances of the nucleobases. Furthermore, it reports on a conformational analysis of the sugar backbone in this RNA hairpin molecule in conjunction with a parameterization of 1J scalar couplings. Achievements: • Establishment of two new NMR pulse-sequences facilitating the assignment of quaternary carbons in RNA nucleobases • First complete (99.5%) NMR resonance assignment of an RNA molecule (14mer) including 1H, 13C, 15N, 31P resonances • Description of RNA backbone conformation by a complete set of NMR parameters • Description of the backbone conformational dependence in RNA of new NMR parameters (1J scalar couplings) Chapters VII & VIII summarize the real-NMR studies that were conducted to elucidate the conformational switching events of several RNA systems. Chapter VIII gives an overview on the experiments that were accomplished on three different bistable RNAs. These molecules where chosen to be good model systems for RNA refolding reactions and so consequently served as reporters of conformational switching events of RNA secondary structure elements. Achievements: • First kinetic studies of RNA refolding reactions with atomic resolution by NMR • Application of [new] RT-NMR techniques either regarding the photolytic initiation of the reaction or regarding the readout of the reaction • Discovery of different RNA refolding mechanisms for different RNA molecules Deciphering of a general rule for RNA refolding methodology to conformational switching processes of RNA tertiary structure elements. The models for these processes were a) the guanine-dependent riboswitch RNA and b) the minimal hammerhead ribozyme. Achievements: • NMR spectroscopic assignment of imino-resonances of the hypoxanthine bound guanine-dependent riboswitch RNA • Application of RT-NMR techniques to monitor the ligand induced conformational switch of the aptamer domain of the guanine-dependent riboswitch RNA at atomic resolution • Translation of kinetic information into structural information • Deciphering a folding mechanism for the guanine riboswitch aptamer domain • Application of RT-NMR techniques to monitor the reaction of the catalytically active mHHR RNA at atomic resolution In the appendices the new NMR pulse-sequences and the experimental parameters are described, which are not explicitly treated in the respective manuscripts.
SARS-CoV-2 contains a positive single-stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS-CoV and SARS-CoV-2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex-vivo structural probing experiments. These elements contain non-base-paired regions that potentially harbor ligand-binding pockets. Here, we performed an NMR-based screening of a poised fragment library of 768 compounds for binding to these RNAs, employing three different 1H-based 1D NMR binding assays. The screening identified common as well as RNA-element specific hits. The results allow selection of the most promising of the 15 RNA elements as putative drug targets. Based on the identified hits, we derive key functional units and groups in ligands for effective targeting of the RNA of SARS-CoV-2.
NMR spectroscopy is a potent method for the structural and biophysical characterization of RNAs. The application of NMR spectroscopy is restricted in RNA size and most often requires isotope‐labeled or even selectively labeled RNAs. Additionally, new NMR pulse sequences, such as the heteronuclear‐detected NMR experiments, are introduced. We herein provide detailed protocols for the preparation of isotope‐labeled RNA for NMR spectroscopy via in vitro transcription. This protocol covers all steps, from the preparation of DNA template to the transcription of milligram RNA quantities. Moreover, we present a protocol for a chemo‐enzymatic approach to introduce a single modified nucleotide at any position of any RNA. Regarding NMR methodology, we share protocols for the implementation of a suite of heteronuclear‐detected NMR experiments including 13C‐detected experiments for ribose assignment and amino groups, the CN‐spin filter heteronuclear single quantum coherence (HSQC) for imino groups and the 15N‐detected band‐selective excitation short transient transverse‐relaxation‐optimized spectroscopy (BEST‐TROSY) experiment.
Basic Protocol 1: Preparation of isotope‐labeled RNA samples with in vitro transcription using T7 RNAP, DEAE chromatography, and RP‐HPLC purification
Alternate Protocol 1: Purification of isotope‐labeled RNA from in vitro transcription with preparative PAGE
Alternate Protocol 2: Purification of isotope‐labeled RNA samples from in vitro transcription via centrifugal concentration
Support Protocol 1: Preparation of DNA template from plasmid
Support Protocol 2: Preparation of PCR DNA as template
Support Protocol 3: Preparation of T7 RNA Polymerase (T7 RNAP)
Support Protocol 4: Preparation of yeast inorganic pyrophosphatase (YIPP)
Basic Protocol 2: Preparation of site‐specific labeled RNAs using a chemo‐enzymatic synthesis
Support Protocol 5: Synthesis of modified nucleoside 3′,5′‐bisphosphates
Support Protocol 6: Preparation of T4 RNA Ligase 2
Support Protocol 7: Setup of NMR spectrometer for heteronuclear‐detected NMR experiments
Support Protocol 8: IPAP and DIPAP for homonuclear decoupling
Basic Protocol 3: 13C‐detected 3D (H)CC‐TOCSY, (H)CPC, and (H)CPC‐CCH‐TOCSY experiments for ribose assignment
Basic Protocol 4: 13C‐detected 2D CN‐spin filter HSQC experiment
Basic Protocol 5: 13C‐detected C(N)H‐HDQC experiment for the detection of amino groups
Support Protocol 9: 13C‐detected CN‐HSQC experiment for amino groups
Basic Protocol 6: 13C‐detected “amino”‐NOESY experiment
Basic Protocol 7: 15N‐detected BEST‐TROSY experiment
Ribonucleic acid oligonucleotides (RNAs) play pivotal roles in cellular function (riboswitches), chemical biology applications (SELEX-derived aptamers), cell biology and biomedical applications (transcriptomics). Furthermore, a growing number of RNA forms (long non-coding RNAs, circular RNAs) but also RNA modifications are identified, showing the ever increasing functional diversity of RNAs. To describe and understand this functional diversity, structural studies of RNA are increasingly important. However, they are often more challenging than protein structural studies as RNAs are substantially more dynamic and their function is often linked to their structural transitions between alternative conformations. NMR is a prime technique to characterize these structural dynamics with atomic resolution. To extend the NMR size limitation and to characterize large RNAs and their complexes above 200 nucleotides, new NMR techniques have been developed. This Minireview reports on the development of NMR methods that utilize detection on low-γ nuclei (heteronuclei like 13C or 15N with lower gyromagnetic ratio than 1H) to obtain unique structural and dynamic information for large RNA molecules in solution. Experiments involve through-bond correlations of nucleobases and the phosphodiester backbone of RNA for chemical shift assignment and make information on hydrogen bonding uniquely accessible. Previously unobservable NMR resonances of amino groups in RNA nucleobases are now detected in experiments involving conformational exchange-resistant double-quantum 1H coherences, detected by 13C NMR spectroscopy. Furthermore, 13C and 15N chemical shifts provide valuable information on conformations. All the covered aspects point to the advantages of low-γ nuclei detection experiments in RNA.
The full-length translation-regulating add adenine riboswitch (Asw) from Vibrio vulnificus has a more complex conformational space than its isolated aptamer domain. In addition to the predicted apo (apoA) and holo conformation that feature the conserved three-way junctional purine riboswitch aptamer, it adopts a second apo (apoB) conformation with a fundamentally different secondary structure. Here, we characterized the ligand-dependent conformational dynamics of the full-length add Asw by NMR and by single-molecule FRET (smFRET) spectroscopy. Both methods revealed an adenine-induced secondary structure switch from the apoB-form to the apoA-form that involves no tertiary structural interactions between aptamer and expression platform. This strongly suggests that the add Asw triggers translation by capturing the apoA-form secondary structure in the holo state. Intriguingly, NMR indicated a homogenous, docked aptamer kissing loop fold for apoA and holo, while smFRET showed persistent aptamer kissing loop docking dynamics between comparably stable, undocked and docked substates of the apoA and the holo conformation. Unraveling the folding of large junctional riboswitches thus requires the integration of complementary solution structural techniques such as NMR and smFRET.
The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5′- and 3′-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5′-untranslated region (5′-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive 1H, 13C, 15N and 31P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy.
In bacteria, the regulation of gene expression by cis-acting transcriptional riboswitches located in the 5'-untranslated regions of messenger RNA requires the temporal synchronization of RNA synthesis and ligand binding-dependent conformational refolding. Ligand binding to the aptamer domain of the riboswitch induces premature termination of the mRNA synthesis of ligand-associated genes due to the coupled formation of 3'-structural elements acting as terminators. To date, there has been no high resolution structural description of the concerted process of synthesis and ligand-induced restructuring of the regulatory RNA element. Here, we show that for the guanine-sensing xpt-pbuX riboswitch from Bacillus subtilis, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. We show that only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding.
Folding of RNA molecules into their functional three-dimensional structures is often supported by RNA chaperones, some of which can catalyse the two elementary reactions helix disruption and helix formation. Hfq is one such RNA chaperone, but its strand displacement activity is controversial. Whereas some groups found Hfq to destabilize secondary structures, others did not observe such an activity with their RNA substrates. We studied Hfq’s activities using a set of short RNAs of different thermodynamic stabilities (GC-contents from 4.8% to 61.9%), but constant length. We show that Hfq’s strand displacement as well as its annealing activity are strongly dependent on the substrate’s GC-content. However, this is due to Hfq’s preferred binding of AU-rich sequences and not to the substrate’s thermodynamic stability. Importantly, Hfq catalyses both annealing and strand displacement with comparable rates for different substrates, hinting at RNA strand diffusion and annealing nucleation being rate-limiting for both reactions. Hfq’s strand displacement activity is a result of the thermodynamic destabilization of the RNA through preferred single-strand binding whereas annealing acceleration is independent from Hfq’s thermodynamic influence. Therefore, the two apparently disparate activities annealing acceleration and duplex destabilization are not in energetic conflict with each other.