Refine
Year of publication
Document Type
- Article (43)
- Doctoral Thesis (1)
Language
- English (44)
Has Fulltext
- yes (44)
Is part of the Bibliography
- no (44)
Keywords
- Biomarker (5)
- Inflammation (5)
- inflammation (5)
- polytrauma (5)
- trauma (4)
- Lung failure (3)
- Trauma (3)
- CC16 (2)
- CD14 (2)
- Experimental models of disease (2)
Institute
Introduction Loss of intestinal integrity has been implicated as an important contributor to the development of excessive inflammation following severe trauma. Thus far, clinical data concerning the occurrence and significance of intestinal damage after trauma remain scarce. This study investigates whether early intestinal epithelial cell damage occurs in trauma patients and, if present, whether such cell injury is related to shock, injury severity and the subsequent inflammatory response. Methods Prospective observational cohort study in 96 adult trauma patients. Upon arrival at the emergency room (ER) plasma levels of intestinal fatty acid binding protein (i-FABP), a specific marker for damage of differentiated enterocytes, were measured. Factors that potentially influence the development of intestinal cell damage after trauma were determined, including the presence of shock and the extent of abdominal trauma and general injury severity. Furthermore, early plasma levels of i-FABP were related to inflammatory markers interleukin-6 (IL-6), procalcitonin (PCT) and C-reactive protein (CRP). Results Upon arrival at the ER, plasma i-FABP levels were increased compared with healthy volunteers, especially in the presence of shock (P < 0.01). The elevation of i-FABP was related to the extent of abdominal trauma as well as general injury severity (P < 0.05). Circulatory i-FABP concentrations at ER correlated positively with IL-6 and PCT levels at the first day (r2 = 0.19; P < 0.01 and r2 = 0.36; P < 0.001 respectively) and CRP concentrations at the second day after trauma (r2 = 0.25; P < 0.01). Conclusions This study reveals early presence of intestinal epithelial cell damage in trauma patients. The extent of intestinal damage is associated with the presence of shock and injury severity. Early intestinal damage precedes and is related to the subsequent developing inflammatory response.
Therapy of hemorrhagic shock with following resuscitation-induced liver injury : in vivo study
(2010)
Shock resulting from life-threatening blood-loss (hemorrhagic shock) represents the most frequent injury pattern after a traumatic insult. Hemorrhagic shock induces inflammatory changes, characterized by highly complex pathophysiological pathways often resulting in death. In this study, we establish an experimental in vivo model of H/R in rats and study the mechanisms which determine the hepatic injury after H/R. Furthermore, we show that hemorrhagic shock with following resuscitation is accompanied with release of systemic and local pro-inflammatory mediators, increased infiltration of hepatic neutrophils in the liver, increased oxidative and nitrosative stress, enhanced cell death of both types, apoptosis and necrosis, conspicuous cytoskeletal rearrangements, loss of hepatic integrity and finally high general mortality rates, up to 80%. In addition, the effects of two potential therapeutic interventions to prevent the H/R induced liver injury are explored in a model of H/R in rats. First, the role of JNK and its inhibition by D-JNKI-1 in preservation of hepatic integrity following H/R was analyzed. Second, we investigated the potential of simvastatin to prevent the disturbed inflammatory response and hepatic injury after H/R. The effects of both therapeutic interventions were studied by looking at several inflammatory parameters, markers of oxidative and nitrosative stress, cytoskeleton integrity, microcirculatory parameters, underlying signaling cascades, liver damage and mortality. Highly specific blockade of JNK with the potent, inhibitory peptide D-JNKI-1 revealed the crucial role of the JNK signaling pathway in the H/R induced pathophysiology and strong protective effects of DJNKI- 1 in H/R induced liver injury, when the peptide was applied before and even after hemorrhagic shock. The other therapeutic intervention tested in this study was the use of simvastatin which also revealed protective effects after H/R and even a remarkable improvement in survival after H/R. We show that H/R induced release of pro-inflammatory cytokines, hepatic PMNL infiltration, increased oxidative and nitrosative stress, apoptosis and necrosis can be diminished by treatment with D-JNKI-1 but also with simvastatin in vivo. Furthermore, simvastatin reduces H/R induced cytoskelatal rearrangements, loss of liver integrity and the mortality rate after H/R. The key pathway which underlies these beneficial effects of simvastatin is the Rho kinase pathway. Identification of both mechanisms as well as the effectiveness of both substances provide new insights in the close interaction between hypoxia and the immune system and present a promising basis for the anti-inflammatory, hepatoprotective treatment after H/R.
Acute ethanol gavage attenuates hemorrhage/resuscitation-induced hepatic oxidative stress in rats
(2012)
Acute ethanol intoxication increases the production of reactive oxygen species (ROS). Hemorrhagic shock with subsequent resuscitation (H/R) also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.). Then, rats were hemorrhaged to a mean arterial blood pressure of 30 ± 2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.). Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE) and nitrosative (3-nitrotyrosine, 3-NT) stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.
Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion
(2016)
Renal cell carcinoma (RCC) escapes immune recognition. To elaborate the escape strategy the influence of RCC cells on endothelial receptor expression and endothelial leukocyte adhesion was evaluated. Human umbilical vein endothelial cells (HUVEC) were co-cultured with the RCC cell line, Caki-1, with and without tumor necrosis factor (TNF)-alpha. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial (E)-selectin, standard and variants (V) of CD44 were then analysed in HUVEC, using flow cytometry and Western blot analysis. To determine which components are responsible for HUVEC-Caki-1 interaction causing receptor alteration, Caki-1 membrane fragments versus cell culture supernatant were applied to HUVECS. Adhesion of peripheral blood lymphocytes (PBL) and polymorphonuclear neutrophils (PMN) to endothelium was evaluated by co-culture adhesion assays. Relevance of endothelial receptor expression for adhesion to endothelium was determined by receptor blockage. Co-culture of RCC and HUVECs resulted in a significant increase in endothelial ICAM-1, VCAM-1, E-selectin, CD44 V3 and V7 expression. Previous stimulation of HUVECs with TNF-alpha and co-cultivation with Caki-1 resulted in further elevation of endothelial CD44 V3 and V7 expression, whereas ICAM-1, VCAM-1 and E-selectin expression were significantly diminished. Since Caki-1 membrane fragments also caused these alterations, but cell culture supernatant did not, cell-cell contact may be responsible for this process. Blocking ICAM-1, VCAM-1, E-selectin or CD44 with respective antibodies led to a significant decrease in PBL and PMN adhesion to endothelium. Thus, exposing HUVEC to Caki-1 results in significant alteration of endothelial receptor expression and subsequent endothelial attachment of PBL and PMN.
Numerous studies have described a correlation between smoking and reduced bone mass. This not only increases fracture risk but also impedes reconstruction/fixation of bone. An increased frequency of complications following surgery is common. Here, we investigate the effect of smoking on the clinical outcome following total joint arthroplasty (TJA). 817 patients receiving primary or revision (including clinical transfers) TJA at our level-one trauma center have been randomly interviewed twice (pre- and six months post-surgery). We found that 159 patients developed complications (infections, disturbed healing, revisions, thrombosis, and/or death). Considering nutritional status, alcohol and cigarette consumption as possible risk factors, OR was highest for smoking. Notably, mean age was significantly lower in smokers (59.2 ± 1.0a) than non-smokers (64.6 ± 0.8; p < 0.001). However, the number of comorbidities was comparable between both groups. Compared to non-smokers (17.8 ± 1.9%), the complication rate increases with increasing cigarette consumption (1–20 pack-years (PY): 19.2 ± 2.4% and >20 PY: 30.4 ± 3.6%; p = 0.002). Consequently, mean hospital stay was longer in heavy smokers (18.4 ± 1.0 day) than non-smokers (15.3 ± 0.5 day; p = 0.009) or moderate smokers (15.9 ± 0.6 day). In line with delayed healing, bone formation markers (BAP and CICP) were significantly lower in smokers than non-smokers 2 days following TJA. Although, smoking increased serum levels of MCP-1, OPG, sRANKL, and Osteopontin as well as bone resorption markers (TRAP5b and CTX-I) were unaffected. In line with an increased infection rate, smoking reduced 25OH vitamin D3 (immune-modulatory), IL-1β, IL-6, TNF-α, and IFN-γ serum levels. Our data clearly show that smoking not only affects bone formation after TJA but also suppresses the inflammatory response in these patients. Thus, it is feasible that therapies favoring bone formation and immune responses help improve the clinical outcome in smokers following TJA.
Background: Polytrauma and respiratory tract damage after thoracic trauma cause about 25% of mortality among severely injured patients. Thoracic trauma can lead to the development of severe lung complications such as acute respiratory distress syndrome, and is, therefore, of great interest for monitoring in intensive care units (ICU). In recent years, club cell protein (CC)16 with its antioxidant properties has proven to be a potential outcome-related marker. In this study, we evaluated whether CC16 constitutes as a marker of lung damage in a porcine polytrauma model.
Methods: In a 72 h ICU polytrauma pig model (thoracic trauma, tibial fracture, hemorrhagic shock, liver laceration), blood plasma samples (0, 3, 9, 24, 48, 72 h), BAL samples (72 h) and lung tissue (72 h) were collected. The trauma group (PT) was compared to a sham group. CC16 as a possible biomarker for lung injury in this model, and IL-8 concentrations as known indicator for ongoing inflammation during trauma were determined by ELISA. Histological analysis of ZO-1 and determination of total protein content were used to show barrier disruption and edema formation in lung tissue from the trauma group.
Results: Systemic CC16 levels were significantly increased early after polytrauma compared vs. sham. After 72 h, CC16 concentration was significantly increased in lung tissue as well as in BAL in PT vs. sham. Similarly, IL-8 and total protein content in BAL were significantly increased in PT vs. sham. Evaluation of ZO-1 staining showed significantly lower signal intensity for polytrauma.
Conclusion: The data confirm for the first time in a larger animal polytrauma model that lung damage was indicated by systemic and/or local CC16 response. Thus, early plasma and late BAL CC16 levels might be suitable to be used as markers of lung injury in this polytrauma model.
Background: Polytrauma and respiratory tract damage after thoracic trauma cause about 25% of mortality among severely injured patients. Thoracic trauma can lead to the development of severe lung complications such as acute respiratory distress syndrome, and is, therefore, of great interest for monitoring in intensive care units (ICU). In recent years, club cell protein (CC)16 with its antioxidant properties has proven to be a potential outcome-related marker. In this study, we evaluated whether CC16 constitutes as a marker of lung damage in a porcine polytrauma model.
Methods: In a 72 h ICU polytrauma pig model (thoracic trauma, tibial fracture, hemorrhagic shock, liver laceration), blood plasma samples (0, 3, 9, 24, 48, 72 h), BAL samples (72 h) and lung tissue (72 h) were collected. The trauma group (PT) was compared to a sham group. CC16 as a possible biomarker for lung injury in this model, and IL-8 concentrations as known indicator for ongoing inflammation during trauma were determined by ELISA. Histological analysis of ZO-1 and determination of total protein content were used to show barrier disruption and edema formation in lung tissue from the trauma group.
Results: Systemic CC16 levels were significantly increased early after polytrauma compared vs. sham. After 72 h, CC16 concentration was significantly increased in lung tissue as well as in BAL in PT vs. sham. Similarly, IL-8 and total protein content in BAL were significantly increased in PT vs. sham. Evaluation of ZO-1 staining showed significantly lower signal intensity for polytrauma.
Conclusion: The data confirm for the first time in a larger animal polytrauma model that lung damage was indicated by systemic and/or local CC16 response. Thus, early plasma and late BAL CC16 levels might be suitable to be used as markers of lung injury in this polytrauma model.
Background: Hypoxia-inducible factor-1α (HIF-1α) and NF-κB play important roles in the inflammatory response after hemorrhagic shock and resuscitation (H/R). Here, the role of myeloid HIF-1α in liver hypoxia, injury, and inflammation after H/R with special regard to NF-κB activation was studied.
Methods: Mice with a conditional HIF-1α knockout (KO) in myeloid cell-line and wild-type (WT) controls were hemorrhaged for 90 min ( mm Hg) and resuscitated. Controls underwent only surgical procedures.
Results: After six hours, H/R enhanced the expression of HIF-1α-induced genes vascular endothelial growth factor (VEGF) and adrenomedullin (ADM). In KO mice, this was not observed. H/R-induced liver injury in HIF-1α KO was comparable to WT. Elevated plasma interleukin-6 (IL-6) levels after H/R were not reduced by HIF-1α KO. Local hepatic hypoxia was not significantly reduced in HIF-1α KO compared to controls after H/R. H/R-induced NF-κB phosphorylation in liver did not significantly differ between WT and KO.
Conclusions: Here, deleting HIF-1α in myeloid cells and thereby in Kupffer cells was not protective after H/R. This data indicates that other factors, such as NF-κB, due to its upregulated phosphorylation in WT and KO mice, contrary to HIF-1α, are rather key modulators of inflammation after H/R in our model.
Characterization of blunt chest trauma in a long-term porcine model of severe multiple trauma
(2016)
Chest trauma has a significant relevance on outcome after severe trauma. Clinically, impaired lung function typically occurs within 72 hours after trauma. However, the underlying pathophysiological mechanisms are still not fully elucidated. Therefore, we aimed to establish an experimental long-term model to investigate physiological, morphologic and inflammatory changes, after severe trauma. Male pigs (sus scrofa) sustained severe trauma (including unilateral chest trauma, femur fracture, liver laceration and hemorrhagic shock). Additionally, non-injured animals served as sham controls. Chest trauma resulted in severe lung damage on both CT and histological analyses. Furthermore, severe inflammation with a systemic increase of IL-6 (p = 0.0305) and a local increase of IL-8 in BAL (p = 0.0009) was observed. The pO2/FiO2 ratio in trauma animals decreased over the observation period (p < 0.0001) but not in the sham group (p = 0.2967). Electrical Impedance Tomography (EIT) revealed differences between the traumatized and healthy lung (p < 0.0001). In conclusion, a clinically relevant, long-term model of blunt chest trauma with concomitant injuries has been developed. This reproducible model allows to examine local and systemic consequences of trauma and is valid for investigation of potential diagnostic or therapeutic options. In this context, EIT might represent a radiation-free method for bedside diagnostics.