Refine
Year of publication
Document Type
- Article (14)
- Doctoral Thesis (1)
Language
- English (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- data science (3)
- pain (2)
- Analgesia (1)
- Analgesie (1)
- Cannabis (1)
- Clincial pharmacology (1)
- Cold pain (1)
- DNA methylation (1)
- Data science (1)
- Genetics (1)
Institute
Background: Cannabis proofed to be effective in pain relief, but one major side effect is its influence on memory in humans. Therefore, the role of memory on central processing of nociceptive information was investigated in healthy volunteers.
Methods: In a placebo-controlled cross-over study including 22 healthy subjects, the effect of 20 mg oral Δ9-tetrahydrocannabinol (THC) on memory involving nociceptive sensations was studied, using a delayed stimulus discrimination task (DSDT). To control for nociceptive specificity, a similar DSDT-based study was performed in a subgroup of thirteen subjects, using visual stimuli.
Results: For each nociceptive stimulus pair, the second stimulus was associated with stronger and more extended brain activations than the first stimulus. These differences disappeared after THC administration. The THC effects were mainly located in two clusters comprising the insula and inferior frontal cortex in the right hemisphere, and the caudate nucleus and putamen bilaterally. These cerebral effects were accompanied in the DSDT by a significant reduction of correct ratings from 41.61% to 37.05% after THC administration (rm-ANOVA interaction "drug" by "measurement": F (1,21) = 4.685, p = 0.042). Rating performance was also reduced for the visual DSDT (69.87% to 54.35%; rm-ANOVA interaction of "drug" by "measurement": F (1,12) = 13.478, p = 0.003) and reflected in a reduction of stimulus-related brain deactivations in the bilateral angular gyrus.
Conclusions: Results suggest that part of the effect of THC on pain may be related to memory effects. THC reduced the performance in DSDT of nociceptive and visual stimuli, which was accompanied by significant effects on brain activations. However, a pain specificity of these effects cannot be deduced from the data presented.
Persistent and, in particular, neuropathic pain is a major healthcare problem with still insufficient pharmacological treatment options. This triggered research activities aimed at finding analgesics with a novel mechanism of action. Results of these efforts will need to pass through the phases of drug development, in which experimental human pain models are established components e.g. implemented as chemical hyperalgesia induced by capsaicin. We aimed at ranking the various readouts of a human capsaicin–based pain model with respect to the most relevant information about the effects of a potential reference analgesic. In a placebo‐controlled, randomized cross‐over study, seven different pain‐related readouts were acquired in 16 healthy individuals before and after oral administration of 300 mg pregabalin. The sizes of the effect on pain induced by intradermal injection of capsaicin were quantified by calculating Cohen's d. While in four of the seven pain‐related parameters, pregabalin provided a small effect judged by values of Cohen's d exceeding 0.2, an item categorization technique implemented as computed ABC analysis identified the pain intensities in the area of secondary hyperalgesia and of allodynia as the most suitable parameters to quantify the analgesic effects of pregabalin. Results of this study provide further support for the ability of the intradermal capsaicin pain model to show analgesic effects of pregabalin. Results can serve as a basis for the designs of studies where the inclusion of this particular pain model and pregabalin is planned.
An important measure in pain research is the intensity of nociceptive stimuli and their cortical representation. However, there is evidence of different cerebral representations of nociceptive stimuli, including the fact that cortical areas recruited during processing of intranasal nociceptive chemical stimuli included those outside the traditional trigeminal areas. Therefore, the aim of this study was to investigate the major cerebral representations of stimulus intensity associated with intranasal chemical trigeminal stimulation. Trigeminal stimulation was achieved with carbon dioxide presented to the nasal mucosa. Using a single‐blinded, randomized crossover design, 24 subjects received nociceptive stimuli with two different stimulation paradigms, depending on the just noticeable differences in the stimulus strengths applied. Stimulus‐related brain activations were recorded using functional magnetic resonance imaging with event‐related design. Brain activations increased significantly with increasing stimulus intensity, with the largest cluster at the right Rolandic operculum and a global maximum in a smaller cluster at the left lower frontal orbital lobe. Region of interest analyses additionally supported an activation pattern correlated with the stimulus intensity at the piriform cortex as an area of special interest with the trigeminal input. The results support the piriform cortex, in addition to the secondary somatosensory cortex, as a major area of interest for stimulus strength‐related brain activation in pain models using trigeminal stimuli. This makes both areas a primary objective to be observed in human experimental pain settings where trigeminal input is used to study effects of analgesics.
Consequences of a human TRPA1 genetic variant on the perception of nociceptive and olfactory stimuli
(2014)
Background: TRPA1 ion channels are involved in nociception and are also excited by pungent odorous substances. Based on reported associations of TRPA1 genetics with increased sensitivity to thermal pain stimuli, we therefore hypothesized that this association also exists for increased olfactory sensitivity.
Methods: Olfactory function and nociception was compared between carriers (n = 38) and non-carriers (n = 43) of TRPA1 variant rs11988795 G.A, a variant known to enhance cold pain perception. Olfactory function was quantified by assessing the odor threshold, odor discrimination and odor identification, and by applying 200-ms pulses of H2S intranasal. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (blunt pressure, electrical stimuli, cold and heat stimuli, and 200-ms intranasal pulses of CO2).
Results: Among the 11 subjects with moderate hyposmia, carriers of the minor A allele (n = 2) were underrepresented (34 carriers among the 70 normosmic subjects; p = 0.049). Moreover, carriers of the A allele discriminated odors significantly better than non-carriers (13.161.5 versus 12.361.6 correct discriminations) and indicated a higher intensity of the H2S stimuli (29.2613.2 versus 21612.8 mm VAS, p = 0.006), which, however, could not be excluded to have involved a trigeminal component during stimulation. Finally, the increased sensitivity to thermal pain could be reproduced.
Conclusions: The findings are in line with a previous association of a human TRPA1 variant with nociceptive parameters and extend the association to the perception of odorants. However, this addresses mainly those stimulants that involve a trigeminal component whereas a pure olfactory effect may remain disputable. Nevertheless, findings suggest that future TRPA1 modulating drugs may modify the perception of odorants.
Background and Aims: Mutations reducing the function of Nav1.7 sodium channels entail diminished pain perception and olfactory acuity, suggesting a link between nociception and olfaction at ion channel level. We hypothesized that if such link exists, it should work in both directions and gain-of-function Nav1.7 mutations known to be associated with increased pain perception should also increase olfactory acuity.
Methods: SCN9A variants were assessed known to enhance pain perception and found more frequently in the average population. Specifically, carriers of SCN9A variants rs41268673C>A (P610T; n = 14) or rs6746030C>T (R1150W; n = 21) were compared with non-carriers (n = 40). Olfactory function was quantified by assessing odor threshold, odor discrimination and odor identification using an established olfactory test. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (punctate and blunt mechanical pressure, heat and electrical stimuli).
Results: The number of carried alleles of the non-mutated SCN9A haplotype rs41268673C/rs6746030C was significantly associated with the comparatively highest olfactory threshold (0 alleles: threshold at phenylethylethanol dilution step 12 of 16 (n = 1), 1 allele: 10.6±2.6 (n = 34), 2 alleles: 9.5±2.1 (n = 40)). The same SCN9A haplotype determined the pain threshold to blunt pressure stimuli (0 alleles: 21.1 N/m2, 1 allele: 29.8±10.4 N/m2, 2 alleles: 33.5±10.2 N/m2).
Conclusions: The findings established a working link between nociception and olfaction via Nav1.7 in the gain-of-function direction. Hence, together with the known reduced olfaction and pain in loss-of-function mutations, a bidirectional genetic functional association between nociception and olfaction exists at Nav1.7 level.
Genetic association studies have shown their usefulness in assessing the role of ion channels in human thermal pain perception. We used machine learning to construct a complex phenotype from pain thresholds to thermal stimuli and associate it with the genetic information derived from the next-generation sequencing (NGS) of 15 ion channel genes which are involved in thermal perception, including ASIC1, ASIC2, ASIC3, ASIC4, TRPA1, TRPC1, TRPM2, TRPM3, TRPM4, TRPM5, TRPM8, TRPV1, TRPV2, TRPV3, and TRPV4. Phenotypic information was complete in 82 subjects and NGS genotypes were available in 67 subjects. A network of artificial neurons, implemented as emergent self-organizing maps, discovered two clusters characterized by high or low pain thresholds for heat and cold pain. A total of 1071 variants were discovered in the 15 ion channel genes. After feature selection, 80 genetic variants were retained for an association analysis based on machine learning. The measured performance of machine learning-mediated phenotype assignment based on this genetic information resulted in an area under the receiver operating characteristic curve of 77.2%, justifying a phenotype classification based on the genetic information. A further item categorization finally resulted in 38 genetic variants that contributed most to the phenotype assignment. Most of them (10) belonged to the TRPV3 gene, followed by TRPM3 (6). Therefore, the analysis successfully identified the particular importance of TRPV3 and TRPM3 for an average pain phenotype defined by the sensitivity to moderate thermal stimuli.
Aim: Exposure to opioids has been associated with epigenetic effects. Studies in rodents suggested a role of varying degrees of DNA methylation in the differential regulation of μ-opioid receptor expression across the brain.
Methods: In a translational investigation, using tissue acquired postmortem from 21 brain regions of former opiate addicts, representing a human cohort with chronic opioid exposure, μ-opioid receptor expression was analyzed at the level of DNA methylation, mRNA and protein.
Results & conclusion: While high or low μ-opioid receptor expression significantly correlated with local OPRM1 mRNA levels, there was no corresponding association with OPRM1 methylation status. Additional experiments in human cell lines showed that changes in DNA methylation associated with changes in μ-opioid expression were an order of magnitude greater than differences in brain. Hence, different degrees of DNA methylation associated with chronic opioid exposure are unlikely to exert a major role in the region-specificity of μ-opioid receptor expression in the human brain.
Inverted perceptual judgment of nociceptive stimuli at threshold level following inconsistent cues
(2015)
Objective: The perception of pain is susceptible to modulation by psychological and contextual factors. It has been shown that subjects judge noxious stimuli as more painful in a respective suggestive context, which disappears when the modifying context is resolved. However, a context in which subjects judge the painfulness of a nociceptive stimulus in exactly the opposite direction to that of the cues has never been shown so far.
Methods: Nociceptive stimuli (300 ms intranasal gaseous CO2) at the individual pain threshold level were applied after a visual cue announcing the stimulus as either "no pain", merely a "stimulus", or "pain". Among the stimuli at threshold level, other CO2 stimuli that were clearly below or above pain threshold were randomly interspersed. These were announced beforehand in 12 subjects randomly with correct or incorrect cues, i.e., clearly painful or clearly non-painful stimuli were announced equally often as not painful or painful. By contrast, in a subsequent group of another 12 subjects, the stimuli were always announced correctly with respect to the evoked pain.
Results: The random and often incorrect announcement of stimuli clearly below or above pain threshold caused the subjects to rate the stimuli at pain-threshold level in the opposite direction of the cue, i.e., when the stimuli were announced as "pain" significantly more often than as non-painful and vice versa (p < 10-4). By contrast, in the absence of incongruence between announcement and perception of the far-from-threshold stimuli, stimuli at pain threshold were rated in the cued direction.
Conclusions: The present study revealed the induction of associations incongruent with a given message in the perception of pain. We created a context of unreliable cues whereby subjects perceived the stimulus opposite to that suggested by a prior cue, i.e., potentially nociceptive stimuli at pain threshold level that were announced as painful were judged as non-painful and vice versa. These findings are consistent with reported data on the effects of distrust on non-painful cognitive responses.
The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models.
The µ-opioid receptor is the primary target structure of most opioid analgesics and thus responsible for the predominant part of their wanted and unwanted effects. Carriers of the frequent genetic µ-opioid receptor variant N40D (allelic frequency 8.2 - 17 %), coded by the single nucleotide polymorphism A>G at position 118 of the µ-opioid receptor coding gene OPRM1 (OPRM1 118A>G SNP), suffer from a decreased opioid potency and from a higher need of opioid analgesics to reach adequate analgesia. The aim of the present work was to identify the mechanism by which the OPRM1 118A>G SNP decreases the opioid potency and to quantify its effects on the analgesic potency and therapeutic range of opioid analgesics.
To elucidate the consequences of the OPRM1 118A>G SNP for the effects of opioid analgesics, brain regions of healthy homozygous carriers of the OPRM1 118A>G SNP were identified by means of functional magnetic resonace imaging (fMRI), where the variant alters the response to opioid analgesics after painful stimulation. Afterwards, the µ-opioid receptor function was analyzed on a molecular level in post mortem samples of these brain regions. Finally, the consequences of the OPRM1 118A>G SNP for the analgesic and respiratory depressive effects of opioids were quantified in healthy carriers and non-carriers of OPRM1 118A>G SNP by means of experimental pain- and respiratory depression-models.
To identify pain processing brain regions, where the variant alters the response to opioid analgesics after painful stimulation, we investigated the effects of different alfentanil concentration levels (0, 25, 50 and 75 ng/ml) on pain-related brain activation achieved by short pulses (300 msec) of gaseous CO2 (66% v/v) delivered to the nasal mucosa using a 3.0 T magnetic head scanner in 16 non-carriers and nine homozygous carriers of the µ-opioid receptor gene variant OPRM1 118A>G. In brain regions associated with the processing of the sensory dimension of pain (pain intensity), such as the primary and secondary somatosensory cortices and the posterior insular cortex, the activation decreased linearly in relation to alfentanil concentrations, which was significantly less pronounced in OPRM1 118G carriers. In contrast, in brain regions known to process the affective dimension of pain (emotional dimension), such as the parahippocampal gyrus, amygdala and anterior insula, the pain-related activation disappeared already at the lowest alfentanil dose, without genotype differences.
Subsequently, we investigated the µ-opioid receptor-expression ([3H]-DAMGO saturation experiments, OPRM1 mRNA analysis by means of RT-PCR), the µ-opioid receptor affinity ([3H]-DAMGO saturation and competition experiments) and µ-opioid receptor signaling ([35S]- GTPγS binding experiments) in post mortem samples of the human SII-region, as a cortical projection region coding for pain intensity, and lateral thalamus, as an important region for nociceptive transmission. Samples of 22 non-carriers, 21 heterozygous and three homozygous carriers of OPRM1 118A>G SNP were included into the analysis. The receptor expression and receptor affinity of both brain regions did not differ between non-carriers and carriers of the variant N40D. In non-carriers, the µ-opioid receptors of the SII-region activated the receptor bound G-protein more efficiently than those of the thalamus (factor 1.55-2.27). This regional difference was missing in heterozygous (factor 0.78-1.66) and homozygous (factor 0.66-1.15) carriers of the N40D variant indicating a reduced receptor-G-protein-coupling in the SII-region.
Finally, the consequences of the alteration of µ-opioid receptor function in carriers and noncarriers of the genetic variant was investigated using pain- and respiratory depression-models. Therefore, 10 healthy non-carriers, four heterozygous and six homozygous carriers of the µ- opioid receptor variant N40D received an infusion of four different concentrations of alfentanil (0, 33.33, 66.66 and 100 ng/ml). At each concentration level, analgesia was assessed by means of electrically (5 Hz sinus 0 to 20 mA) and chemically (200 ms gaseous CO2 pulses applied to the nasal mucosa) induced pain, and respiratory depression was quantified by means of hypercapnic challenge according to Read and recording of the breathing frequency. The results showed that depending on the used pain model, both heterozygous and homozygous carriers of the variant N40D needed 2 – 4 times higher alfentanil concentrations to achieve the same analgesia as non-carriers. This increase seems to be at least for homozygous carriers unproblematic, because to reach a comparable respiratory depression as non-carriers, they needed 10-12 times higher alfentanil concentrations.
The results of this work demonstrate that the µ-opioid receptor variant N40D causes a regionally limited reduction of the signal transduction efficiency of µ-opioid receptors in brain regions involved in pain processing. Thus, the painful activation of sensory brain regions coding for pain intensity is not sufficiently suppressed by opioid analgesics in carriers of the variant N40D. Due to the insufficient suppression in hetero- and homozygous carriers of the variant N40D, the concentration of opioids has to be increased by a factor 2 - 4, in order to achieve the same analgesia as in non-carriers. At the same time, the respiratory depressive effects are decreased to a greater extent in homozygous carriers of the N40D variant as they need a 10 - 12 times higher opioid concentration to suffer from the same degree of respiratory depression as non-carriers. Due to the increased therapeutic range of opioid analgesics, an increase of the opioid dose seems to be harmless, at least for homozygous carriers of the N40D variant.