Refine
Document Type
- Article (8)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- Heavy-ion collisions (2)
- B-slope (1)
- Beam energy scan (1)
- Charm quark spatial diffusion coefficient (1)
- Chiral magnetic effect (1)
- Coalescence (1)
- Collectivity (1)
- Correlation (1)
- Critical point (1)
- Deuteron production (1)
Institute
Elliptic flow of heavy-flavor decay electrons in Au+Au collisions at √sNN = 27 and 54.4 GeV at RHIC
(2023)
We report on new measurements of elliptic flow (v2) of electrons from heavy-flavor hadron decays at mid-rapidity (|y|<0.8) in Au+Au collisions at sNN−−−√ = 27 and 54.4 GeV from the STAR experiment. Heavy-flavor decay electrons (eHF) in Au+Au collisions at sNN−−−√ = 54.4 GeV exhibit a non-zero v2 in the transverse momentum (pT) region of pT< 2 GeV/c with the magnitude comparable to that at sNN−−−√=200 GeV. The measured eHF v2 at 54.4 GeV is also consistent with the expectation of their parent charm hadron v2 following number-of-constituent-quark scaling as other light and strange flavor hadrons at this energy. These suggest that charm quarks gain significant collectivity through the evolution of the QCD medium and may reach local thermal equilibrium in Au+Au collisions at sNN−−−√=54.4 GeV. The measured eHF v2 in Au+Au collisions at sNN−−−√= 27 GeV is consistent with zero within large uncertainties. The energy dependence of v2 for different flavor particles (π,ϕ,D0/eHF) shows an indication of quark mass hierarchy in reaching thermalization in high-energy nuclear collisions.
Measurements of mass and Λ binding energy of 4ΛH and 4ΛHe in Au+Au collisions at sNN−−−√=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.) MeV for 4ΛH and 4ΛHe, respectively. The measured Λ binding-energy difference is 0.16±0.14(stat.)±0.10(syst.) MeV for ground states. Combined with the γ-ray transition energies, the binding-energy difference for excited states is −0.16±0.14(stat.)±0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔB4Λ(1+exc)≈−ΔB4Λ(0+g.s.)<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.
A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at sNN−−−√=27 GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity |η|<1.0 and at forward rapidity 2.1<|η|<5.1. We compare the results based on the directed flow plane (Ψ1) at forward rapidity and the elliptic flow plane (Ψ2) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to Ψ1 than to Ψ2, while a flow driven background scenario would lead to a consistent result for both event planes. In 10-50\% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95\% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.
Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au+Au collisions at √sNN = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au+Au collisions and a decrease in the extracted scaling exponent (ν) from peripheral to central collisions. The ν is consistent with a constant for different collisions energies in the mid-central (10-40%) collisions. Moreover, the ν in the 0-5% most central Au+Au collisions exhibits a non-monotonic energy dependence that reaches a minimum around √sNN = 27 GeV. The physics implications on the QCD phase structure are discussed.
The differential cross section for 𝑍0 production, measured as a function of the boson’s transverse momentum (𝑝T), provides important constraints on the evolution of the transverse momentum dependent parton distribution functions (TMDs). The transverse single spin asymmetry (TSSA) of the 𝑍0 is sensitive to one of the polarized TMDs, the Sivers function, which is predicted to have the opposite sign in 𝑝 + 𝑝 → 𝑊 ∕𝑍 + 𝑋 from that which enters in semi-inclusive deep inelastic scattering. In this Letter, the STAR Collaboration reports the first measurement of the 𝑍0∕𝛾∗ differential cross section as a function of its 𝑝T in 𝑝+𝑝 collisions at a center-of-mass energy of 510 GeV, together with the 𝑍0∕𝛾∗ total cross section. We also report the measurement of 𝑍0∕𝛾∗ TSSA in transversely polarized 𝑝+𝑝 collisions at 510 GeV.
We report results on an elastic cross section measurement in proton–proton collisions at a center-of-mass energy √𝑠 = 510 GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range 0.23 ≤ −𝑡 ≤ 0.67 GeV2. This is the only measurement of the proton-proton elastic cross section in this 𝑡 range for collision energies above the Intersecting Storage Rings (ISR) and below the Large Hadron Collider (LHC) colliders. We find that a constant slope 𝐵 does not fit the data in the aforementioned 𝑡 range, and we obtain a much better fit using a second-order polynomial for 𝐵(𝑡). This is the first measurement below the LHC energies for which the non-constant behavior 𝐵(𝑡) is observed. The 𝑡 dependence of 𝐵 is also determined using six subintervals of 𝑡 in the STAR measured 𝑡 range, and is in good agreement with the phenomenological models. The measured elastic differential cross section d𝜎∕dt agrees well with the results obtained at √𝑠 = 540 GeV for proton–antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR 𝑡-range is 𝜎f id el = 462.1 ± 0.9(stat.) ± 1.1(syst.) ± 11.6(scale) 𝜇b.
We report the first measurements of cumulants, up to 4𝑡ℎ order, of deuteron number distributions and protondeuteron correlations in Au+Au collisions recorded by the STAR experiment in phase-I of Beam Energy Scan (BES) program at the Relativistic Heavy Ion Collider. Deuteron cumulants, their ratios, and proton-deuteron mixed cumulants are presented for different collision centralities covering a range of center-of-mass energy per nucleon pair √𝑠NN = 7.7 to 200 GeV. It is found that the cumulant ratios at lower collision energies favor a canonical ensemble over a grand canonical ensemble in thermal models. An anti-correlation between proton and deuteron multiplicity is observed across all collision energies and centralities, consistent with the expectation from global baryon number conservation. The UrQMD model coupled with a phase-space coalescence mechanism qualitatively reproduces the collision-energy dependence of cumulant ratios and proton-deuteron correlations.
The linear and mode-coupled contributions to higher-order anisotropic flow are presented for Au+Au collisions at √sN N = 27, 39, 54.4, and 200 GeV and compared to similar measurements for Pb+Pb collisions at the Large Hadron Collider (LHC). The coefficients and the flow harmonics’ correlations, which characterize the linear and mode-coupled response to the lower-order anisotropies, indicate a beam energy dependence consistent with an influence from the specific shear viscosity (η/s). In contrast, the dimensionless coefficients, mode-coupled response coefficients, and normalized symmetric cumulants are approximately beam-energy independent, consistent with a significant role from initialstate effects. These measurements could provide unique supplemental constraints to (i) distinguish between different initial-state models and (ii) delineate the temperature (T ) and baryon chemical potential (μB ) dependence of the specific shear viscosity η s (T ,μB ).