Refine
Document Type
- Article (15)
Language
- English (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Biofluids (1)
- Charged-particle multiplicity (1)
- Cold nuclear matter effects (1)
- Collectivity (1)
- Correlation (1)
- Diagnostic markers (1)
- Diffraction (1)
- Dissociative seizures (1)
- Elastic scattering (1)
- Epilepsy (1)
Institute
- Physik (13)
- Medizin (2)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
Background: There are no blood-based molecular biomarkers of temporal lobe epilepsy (TLE) to support clinical diagnosis. MicroRNAs are short noncoding RNAs with strong biomarker potential due to their cell-specific expression, mechanistic links to brain excitability, and stable detection in biofluids. Altered levels of circulating microRNAs have been reported in human epilepsy, but most studies collected samples from one clinical site, used a single profiling platform or conducted minimal validation.
Method: Using a case-control design, we collected plasma samples from video-electroencephalogram-monitored adult TLE patients at epilepsy specialist centers in two countries, performed genome-wide PCR-based and RNA sequencing during the discovery phase and validated findings in a large (>250) cohort of samples that included patients with psychogenic non-epileptic seizures (PNES).
Findings: After profiling and validation, we identified miR-27a-3p, miR-328-3p and miR-654-3p with biomarker potential. Plasma levels of these microRNAs were also changed in a mouse model of TLE but were not different to healthy controls in PNES patients. We determined copy number of the three microRNAs in plasma and demonstrate their rapid detection using an electrochemical RNA microfluidic disk as a prototype point-of-care device. Analysis of the microRNAs within the exosome-enriched fraction provided high diagnostic accuracy while Argonaute-bound miR-328-3p selectively increased in patient samples after seizures. In situ hybridization localized miR-27a-3p and miR-328-3p within neurons in human brain and bioinformatics predicted targets linked to growth factor signaling and apoptosis.
Interpretation: This study demonstrates the biomarker potential of circulating microRNAs for epilepsy diagnosis and mechanistic links to underlying pathomechanisms.
We report on the measurements of directed flow v1 and elliptic flow v2 for hadrons (π±, K ±, K0 S , p, φ, Λ and ) from Au+Au collisions at √sN N = 3 GeV and v2 for (π±, K ±, p and p) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the numberof-constituent-quark (NCQ) scaling holds, at 3 GeV the v2 at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the v1 slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative v2 and positive v1 slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in √sNN = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in √sNN = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
There is a need for diagnostic biomarkers of epilepsy and status epilepticus to support clinical examination, electroencephalography and neuroimaging. Extracellular microRNAs may be potentially ideal biomarkers since some are expressed uniquely within specific brain regions and cell types. Cerebrospinal fluid offers a source of microRNA biomarkers with the advantage of being in close contact with the target tissue and sites of pathology. Here we profiled microRNA levels in cerebrospinal fluid from patients with temporal lobe epilepsy or status epilepticus, and compared findings to matched controls. Differential expression of 20 microRNAs was detected between patient groups and controls. A validation phase included an expanded cohort and samples from patients with other neurological diseases. This identified lower levels of miR-19b in temporal lobe epilepsy compared to controls, status epilepticus and other neurological diseases. Levels of miR-451a were higher in status epilepticus compared to other groups whereas miR-21-5p differed in status epilepticus compared to temporal lobe epilepsy but not to other neurological diseases. Targets of these microRNAs include proteins regulating neuronal death, tissue remodelling, gliosis and inflammation. The present study indicates cerebrospinal fluid contains microRNAs that can support differential diagnosis of temporal lobe epilepsy and status epilepticus from other neurological and non-neurological diseases.
We report results on the total and elastic cross sections in proton-proton collisions at √s = 200 GeV obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section was measured in the squared four-momentum transfer range 0.045 ≤ −t ≤ 0.135 GeV2. The value of the exponential slope parameter B of the elastic differential cross section dσ/dt ∼ e−Bt in the measured −t range was found to be B = 14.32 ± 0.09(stat.)+0.13 −0.28(syst.) GeV−2. The total cross section σtot, obtained from extrapolation of the dσ/dt to the optical point at −t = 0, is σtot = 54.67 ± 0.21(stat.)+1.28 −1.38(syst.) mb. We also present the values of the elastic cross section σel = 10.85 ± 0.03(stat.)+0..49 −0.41(syst.) mb, the elastic cross section integrated within the STAR t-range σ det el = 4.05 ± 0.01(stat.)+0.18−0.17(syst.) mb, and the inelastic cross section σinel = 43.82 ± 0.21(stat.)+1.37−1.44(syst.) mb. The results are compared with the world data
New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient v1, are presented for transverse momenta pT, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range √sN N = 7.7–200 GeV. The measurements underscore the importance of momentum conservation, and the characteristic dependencies on √sN N , centrality and pT are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and pT dependencies of veven 1 , as well as an observed similarity between its excitation function and that for v3, could serve as constraints for initial-state models. The veven 1 excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.
Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions – the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in p + Au and d + Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data.
We report the first multi-differential measurements of strange hadrons of K −, φ and − yields as well as the ratios of φ/K − and φ/− in Au+Au collisions at √sNN = 3 GeV with the STAR experiment fixed target configuration at RHIC. The φ mesons and − hyperons are measured through hadronic decay channels, φ → K + K − and Ξ− → Λπ−. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The 4π yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the φ/K − and φ/− ratios while the result of canonical ensemble (CE) calculations reproduce φ/K −, with the correlation length rc ∼ 2.7 fm, and φ/−, rc ∼ 4.2 fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at 3 GeV implies a rather different medium property at high baryon density.
Measurement of groomed jet substructure observables in p+p collisions at √s = 200 GeV with STAR
(2020)
In this letter, measurements of the shared momentum fraction (zg) and the groomed jet radius (Rg), as defined in the SoftDrop algorithm, are reported in p+p collisions at √s = 200 GeV collected by the STAR experiment. These substructure observables are differentially measured for jets of varying resolution parameters from R = 0.2 − 0.6 in the transverse momentum range 15 < pT,jet < 60 GeV/c. These studies show that, in the pT,jet range accessible at √s = 200 GeV and with increasing jet resolution parameter and jet transverse momentum, the zg distribution asymptotically converges to the DGLAP splitting kernel for a quark radiating a gluon. The groomed jet radius measurements reflect a momentum-dependent narrowing of the jet structure for jets of a given resolution parameter, i.e., the larger the pT,jet, the narrower the first splitting. For the first time, these fully corrected measurements are compared to Monte Carlo generators with leading order QCD matrix elements and leading log in the parton shower, and to state-of-the-art theoretical calculations at next-to-leading-log accuracy. We observe that PYTHIA 6 with parameters tuned to reproduce RHIC measurements is able to quantitatively describe data, whereas PYTHIA 8 and HERWIG 7, tuned to reproduce LHC data, are unable to provide a simultaneous description of both zg and Rg, resulting in opportunities for fine parameter tuning of these models for p+p collisions at RHIC energies. We also find that the theoretical calculations without non-perturbative corrections are able to qualitatively describe the trend in data for jets of large resolution parameters at high pT,jet, but fail at small jet resolution parameters and low jet transverse momenta.
The polarization of Λ and Λ¯ hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at √sNN = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pT dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pT dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.