Refine
Year of publication
Language
- English (65)
Has Fulltext
- yes (65)
Is part of the Bibliography
- no (65)
Keywords
- Canonical suppression (1)
- Elastic scattering (1)
- Hadronization (1)
- Heavy ion collisions (1)
- Net-charge correlations (1)
- Net-charge fluctuations (1)
- Particle production (1)
- Polarization (1)
- Quark–gluon plasma (1)
- Resonances (1)
Institute
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
We report results on the ratio of midrapidity antiproton-to-proton yields in Au+Au collisions at sqrt[sNN] = 130 GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of | y|<0.5 and 0.4<pt<1.0 GeV/c, the ratio is essentially independent of either transverse momentum or rapidity, with an average of 0.65±0.01(stat)±0.07(syst) for minimum bias collisions. Within errors, no strong centrality dependence is observed. The results indicate that at this RHIC energy, although the p-p-bar pair production becomes important at midrapidity, a significant excess of baryons over antibaryons is still present.
We report first results on elliptic flow of identified particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR TPC at RHIC. The elliptic flow as a function of transverse momentum and centrality differs significantly for particles of different masses. This dependence can be accounted for in hydrodynamic models, indicating that the system created shows a behavior consistent with collective hydrodynamical flow. The fit to the data with a simple model gives information on the temperature and flow velocities at freeze-out.
We report the first measurement of strange ( Lambda ) and antistrange ( Lambda -bar) baryon production from sqrt[sNN]=130 GeV Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Rapidity density and transverse mass distributions at midrapidity are presented as a function of centrality. The yield of Lambda and Lambda -bar hyperons is found to be approximately proportional to the number of negative hadrons. The production of Lambda -bar hyperons relative to negative hadrons increases very rapidly with transverse momentum. The magnitude of the increase cannot be described by existing hadronic string fragmentation models alone.
The minimum-bias multiplicity distribution and the transverse momentum and pseudorapidity distributions for central collisions have been measured for negative hadrons ( h-) in Au+Au interactions at sqrt[sNN] = 130 GeV. The multiplicity density at midrapidity for the 5% most central interactions is dNh-/d eta | eta = 0 = 280±1(stat)±20(syst), an increase per participant of 38% relative to pp-bar collisions at the same energy. The mean transverse momentum is 0.508±0.012 GeV/c and is larger than in central Pb+Pb collisions at lower energies. The scaling of the h- yield per participant is a strong function of pperp. The pseudorapidity distribution is almost constant within | eta |<1.
We report on the rapidity and centrality dependence of proton and antiproton transverse mass distributions from 197Au + 197Au collisions at sqrt[sNN ]=130 GeV as measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Our results are from the rapidity and transverse momentum range of |y| <0.5 and 0.35< pt <1.00 GeV/c . For both protons and antiprotons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y| <0.5 . Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton (antiproton) yields and transverse mass distributions the possibility of prehadronic collective expansion may have to be taken into account.
We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at sqrt[sNN]=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for 5<pT<12 GeV/c. The collision energy dependence of the yields and the centrality and pT dependence of the suppression provide stringent constraints on theoretical models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of pT-dependent suppression, which may be expected from models incorporating jet attenuation in cold nuclear matter or scattering of fragmentation hadrons.
Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarelativistic nuclear collisions. Flow measurements also provide a means of distinguishing between hydrodynamic models and calculations which approach the low density (dilute gas) limit. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (nonflow correlations). Using data for Au + Au collisions at sqrt[sNN]=130 GeV from the STAR time projection chamber, it is found that four-particle correlation analyses can reliably separate flow and nonflow correlation signals. The latter account for on average about 15% of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also corrected for the effect of flow variations within centrality bins. This effect is negligible for all but the most central bin, where the correction to the elliptic flow is about a factor of 2. A simple new method for two-particle flow analysis based on scalar products is described. An analysis based on the distribution of the magnitude of the flow vector is also described.