Refine
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Electromagnetic probes (1)
- In-Medium Zerfall (1)
- Meson (1)
- Nuclear Physics (1)
- Relativistic Dissipative Hydrodynamics (1)
- Relativistic Heavy-ion Collisions (1)
- Relativistic heavy-ion collisions (1)
- Rho-Meson (1)
- Temperatur (1)
- Verbreitung (1)
Institute
- Physik (5)
The modification of the width of the rho meson due to in-medium decays and collisions is evaluated. In high temperature and/or high density hadronic matter, the collision width is much larger than the one-loop decay width. The large width of the meson in matter seems to be consistent with some current interpretations of the e+e mass spectra measured at the CERN/SPS.
The modification of the width of rho mesons due to in-medium decays and collisions is evaluated. The decay width is calculated from the imaginary part of the one-loop selfenergy at finite temperature. The collision width is related to the cross sections of the rho + pion and the rho + nucleon reactions. A calculation based on an e ective Lagrangian shows the importance of including the direct pho pi - > pho pi scattering which is dominated by the a1 exchange. A large broadening of the spectral function is found, accompanied by a strength suppression at the pole. http://www.arxiv.org/abs/nucl-th/9812059
Using combined data from the Relativistic Heavy Ion and Large Hadron Colliders, we constrain the shear and bulk viscosities of quark-gluon plasma (QGP) at temperatures of ∼150–350 MeV. We use Bayesian inference to translate experimental and theoretical uncertainties into probabilistic constraints for the viscosities. With Bayesian model averaging we propagate an estimate of the model uncertainty generated by the transition from hydrodynamics to hadron transport in the plasma’s final evolution stage, providing the most reliable phenomenological constraints to date on the QGP viscosities.
Nuclear transport models including density- and momentum-dependent mean-field effects are compared to intranuclear-cascade models and tested on recent data on inclusive p-like cross sections for 800A-MeV La+La. We find a remarkable agreement between most model calculations but a systematic disagreement with the measured yield at 20°, possibly indicating a need for modification of nuclear transport properties at high densities.
Starting from IP-Glasma initial conditions, we investigate the effects of bulk pressure on low mass dilepton production at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) energies. Though thermal dilepton is affected by the presence of both bulk and shear viscosity, whether or not these effects can be measured depends on the dilepton “cocktail” contribution to the the low mass dilepton . Combining the thermal and “cocktail” dileptons, the effects of bulk viscosity on total dilepton is investigated.