Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
Institute
The transporter associated with antigen processing-like (TAPL) acts as a lysosomal ATP-dependent polypeptide transporter with broad length selectivity. To characterize in detail its substrate specificity, a procedure for solubilization, purification and functional reconstitution of human TAPL was developed. TAPL was expressed in Sf9 insect cells with the baculovirus expression system and solubilized from crude membranes. By intensive screening of detergents, the mild non-ionic detergents digitonin and dodecylmaltoside were found to be ideal for solubilization with respect to efficiency, long term stability, and functionality of TAPL. TAPL was isolated in a two-step procedure with a yield of 500 micro g/L cell culture and, subsequently, reconstituted into proteoliposomes. The KM(pep) for the peptide RRYCfKSTEL (f refers to fluorescence label) and KM(ATP) were determined to be 10.5 ± 2.3 micro M and 97.6 ± 27.5 micro M, respectively, which are in the same range as the Michaelis-Menten constants determined in the membranes. The peptide transport activity of the reconstituted TAPL strongly depends on the lipid composition. Interestingly, the E. coli lipids are prefered over other tested natural lipids extracts. Moreover, phosphatidylcholine, the most abundant phospholipid in eukaryotic cells influenced TAPL activity in a dose dependent manner. In addition, some negatively charged lipids like DOPA and DOPS increased peptide transport activity with preference for DOPS. However, DOPE or egg PG which are also negatively charged had no effect. It seems not only the charge but also the specific head group of phospholipids that has impact on the function of TAPL. With the help of combinatorial peptide libraries containing D-amino acid residues at defined positions as well as bulky fluorescein labeled peptides, the key positions of the peptides were localized to the N- and C-terminal residues with respect to peptide transport. The C-terminal position has the strongest selectivity since modification at this position shows strongest impact on peptide transport. Additionally, positions 2 and 3 of the peptide also have weak influence on peptide selectivity. Subsequently, the residue preferences at the key positions were systematically investigated by combinatorial peptide libraries with defined residues at certain positions. At both ends, TAPL favors positively charged, aromatic, or hydrophobic residues and disfavors negatively charged residues as well as asparagine and methionine. The residue preferences at the key positions are valid for peptide substrates with different length, indicating a general rule for TAPL selectivity. Besides specific interactions of both terminal residues, electrostatic interactions are important, since peptides with positive net charge are more efficiently transported than negatively charged ones. By size exclusion chromatography (SEC) and blue native PAGE, TAPL purified in the presence of digitonin or dodecylmaltoside had an apparent molecular weight of 200 kDa which is close to the theoretical molecular mass of the TAPL homodimer (172 kDa). The purified and reconstituted TAPL showed specific ATP hydrolysis activity which can be inhibited by orthovanadate. TAPL in proteoliposomes showed 6-fold higher ATP hydrolysis than digitonin solubilized protein, indicating the phospholipids impact on TAPL function. However, no peptide substrate stimulated ATPase activity was observed. For site-specific labeling of TAPL, eight cysteines in each half transporter were replaced by alanine or valine. The TAPL cys-less mutant showed the same peptide transport activity as TAPL wt. Based on the functional TAPL cys-less mutant, seven single cysteine mutants were introduced into strategic positions. All single cysteine mutants in the TMD did not influence peptide transport, whereas the mutant L701C, which is close to the conserved H-loop motif, displayed impaired transport. TAPL orthologs Haf-4 and Haf-9 from Caenorhabditis elegans possess around 40% sequence identities with TAPL and 50% with each other. Both proteins are putative half transporters and reported to be involved in the intestinal granule formation (Bauer, 2006; Kawai et al., 2009). To further understand the physiological functions of these two proteins, they were expressed in Sf9 insect cells. Haf-4 and Haf-9 showed weak but specific ATP- and peptide-dependent peptide transport activity for the given peptide RRYCfKSTEL. Therefore, it was proposed that the physiological roles for Haf-4 and Haf-9 might be related to their peptide transport activity. Besides forming functional homodimeric complex as estimated by the peptide transport activities, both half transporter could also form heteromers which was confirmed by coimmunoprecipitation. However, the heteromers showed decreased transport activity.
The lysosomal ABC transporter associated with antigen processing-like (TAPL, ABCB9) acts as an ATP-dependent polypeptide transporter with broad length selectivity. To characterize in detail its substrate specificity, a procedure for functional reconstitution of human TAPL was developed. By intensive screening of detergents, ideal solubilization conditions were evolved with respect to efficiency, long term stability, and functionality of TAPL. TAPL was isolated in a two-step procedure with high purity and, subsequently, reconstituted into proteoliposomes. The peptide transport activity of reconstituted TAPL strongly depends on the lipid composition. With the help of combinatorial peptide libraries, the key positions of the peptides were localized to the N- and C-terminal residues with respect to peptide transport. At both ends, TAPL favors positively charged, aromatic, or hydrophobic residues and disfavors negatively charged residues as well as asparagine and methionine. Besides specific interactions of both terminal residues, electrostatic interactions are important, since peptides with positive net charge are more efficiently transported than negatively charged ones.