Refine
Document Type
- Article (3)
- Conference Proceeding (2)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
Institute
We derive the Polyakov-loop thermodynamic potential in the perturbative approach to pure SU(3) Yang-Mills theory. The potential expressed in terms of the Polyakov loop in the fundamental representation corresponds to that of the strong-coupling expansion, of which the relevant coefficients of the gluon energy distribution are specified by characters of the SU(3) group. At high temperature, the potential exhibits the correct asymptotic behavior, whereas at low temperature, it disfavors gluons as appropriate dynamical degrees of freedom. To quantify the Yang-Mills thermodynamics in confined phase, we introduce a hybrid approach which matches the effective gluon potential to that of glueballs, constrained by the QCD trace anomaly in terms of dilaton fields.
Phase transitions in a non-perturbative regime can be studied by ab initio Lattice Field Theory methods. The status and future research directions for LFT investigations of Quantum Chromo-Dynamics under extreme conditions are reviewed, including properties of hadrons and of the hypothesized QCD axion as inferred from QCD topology in different phases. We discuss phase transitions in strong interactions in an extended parameter space, and the possibility of model building for Dark Matter and Electro-Weak Symmetry Breaking. Methodological challenges are addressed as well, including new developments in Artificial Intelligence geared towards the identification of different phases and transitions.
Dirac spectrum representations of the Polyakov loop fluctuations are derived on the temporally odd-number lattice, where the temporal length is odd with the periodic boundary condition. We investigate the Polyakov loop fluctuations based on these analytical relations. It is semi-analytically and numerically found that the low-lying Dirac eigenmodes have little contribution to the Polyakov loop fluctuations, which are sensitive probe for the quark deconfinement. Our results suggest no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD.
We propose an effective theory of SU(3) gluonic matter where interactions between color-electric and color-magnetic gluons are constrained by the center and scale symmetries. Through matching to the dimensionally-reduced magnetic theories, the magnetic gluon condensate qualitatively changes its thermal behavior above the critical temperature. We argue its phenomenological consequences for the thermodynamics, in particular the dynamical breaking of scale invariance.
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.