Refine
Year of publication
- 2008 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Biochemie (1)
- Biochemistry (1)
- Kryo-Elektronenkristallographie (1)
- Membranproteine (1)
- Strukturanalyse (1)
- Strukturaufklärung (1)
- cryo-eletron crystallography (1)
- membrane protein (1)
- structure determination (1)
Institute
Three-dimensional structure of the glycine-betaine transporter BetP by cryo electron crystallography
(2008)
The soil bacterium Corynebacterium glutamicum has five secondary transporters for compatible solutes allowing it to cope with osmotic stress. The most abundant of them, the transporter BetP, performs a high affinity uptake of glycine-betain when encountering hyperosmotic stress. BetP belongs to the betaine/carnitine/choline/transporter (BCCT) family, and is predicted to have twelve transmembrane helices with both termini facing the cytoplasm. The goal of this thesis is to facilitate understanding of BetP function by determining a three dimensional (3D) model of its structure. Two-dimensional (2D) crystallization of wild-type (WT) BetP has been successfully performed by reconstitution into a mixture of E. coli lipids and bovine cardiolipin, which resulted in vesicular crystals diffracting to 7.5 Å resolution (Ziegler, Morbach et al. 2004). Diffraction patterns of these crystals however showed unfocused spots, generally due to high mosaicity. Better results were obtained by using the constitutively active mutant BetPdeltaC45 in which the first 45 amino acids of the positively charged C-terminus were removed. BetPdeltaC45 crystals obtained under the same conditions for BetP WT were concluded to be pseudo crystals, based on the inconsistence of symmetry. These crystals had BetPdeltaC45 molecules randomly up/downwards inserted into membrane crystals, and cannot be used for structure determination, even though they diffracted up to 7 Å. The problem of pseudo crystal formation could be solved by changing the lipids used for 2D crystallization to a native lipid extract from C. glutamicum cells. This change of lipids improved the crystals to well-ordered packing with exclusive p121_b symmetry. To understand the role of lipids in crystal packing and order, lipids were extracted at different stages during crystallization, and identified by using multiple precursor ion scanning mass spectrometry. The results show that phosphatidyl glycerol (PG) 16:0-18:1 is the most dominant lipid species in C. glutamicum membranes, and that BetP has a preference for the fatty acid moieties 16:0-18:1. Crystallization with synthetic PG 16:0-18:1 proved that an excess of this lipid prevents pseudo crystal formation, but these crystals did not reach the quality as previously achieved by using the C. glutamicum lipids. Apart from the effect of lipids in crystallinity, the concentration and type of salts influenced crystal growth and morphology. High salt conditions (>400 mM LiCl or KCl) yielded tubular crystals, whereas low salt conditions (<300 mM LiCl, NaCl or KCl) led to formation of up to 10 µm large sheet-like crystals. The intermediate concentration gave a mixture of sheet-like and tubular crystals. In terms of resolution, sheets diffracted better than tubes. The sheet-like crystals used for 3D map reconstruction were obtained from a dialysis buffer containing 200 mM NaCl combined with using C. glutamicum lipids. Electron microscopic images were taken from frozen-hydrated crystals using a helium-cooled JEOL 300 SFF microscope or a liquid nitrogen-cooled FEI Tecnai G2 microscope at 300 kV, which allowed optimal data collection and minimized radiation damage to the sample. More than 1000 images of tilt angles up to 50° were taken and evaluated using optical diffraction of a laser beam. The best 200 images were processed with the MRC image processing software package, and 79 images from different tilt angles were merged to the final data set used for calculation of a 3D map at a planar resolution of 8 Å. The structure shows BetPdeltaC45 as a trimer with each monomer consisting of 12 transmembrane alpha-helices. Protein termini and loop regions could not be determined due to the limited resolution of the map. Six of the twelve helices line a central cavity forming a potential substrate-binding chamber. Each monomer shows a central cavity in different sizes and shapes. Thus, the constitutively active BetPdeltaC45 thus forms an unusual asymmetric homotrimer. BetP most likely reflects three different conformational states of secondary transporters: the cytoplasmically open (C), the occluded (O), and the periplasmically open (P) states. The C and O states are similar to BetP WT projection structure, while the P state is discrepant and highly flexible due to the shape and size of the central cavity as well as the lowest intensity of the density. The observation of the P state corresponds well to the constitutively active property of BetPdeltaC45. For the high resolution structure of the C and O states are available, this work presents the first structural information of the P state of a secondary transporter.