Refine
Language
- English (20)
Has Fulltext
- yes (20)
Is part of the Bibliography
- no (20)
Institute
- Physik (20)
Data from the first physics run at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Au+Au collisions at sqrt[sNN]=130 GeV, have been analyzed by the STAR Collaboration using three-pion correlations with charged pions to study whether pions are emitted independently at freeze-out. We have made a high-statistics measurement of the three-pion correlation function and calculated the normalized three-particle correlator to obtain a quantitative measurement of the degree of chaoticity of the pion source. It is found that the degree of chaoticity seems to increase with increasing particle multiplicity.
The balance function is a new observable based on the principle that charge is locally conserved when particles are pair produced. Balance functions have been measured for charged particle pairs and identified charged pion pairs in Au+Au collisions at sqrt[sNN]=130 GeV at the Relativistic Heavy Ion Collider using STAR. Balance functions for peripheral collisions have widths consistent with model predictions based on a superposition of nucleon-nucleon scattering. Widths in central collisions are smaller, consistent with trends predicted by models incorporating late hadronization.
Azimuthal anisotropy (v2) and two-particle angular correlations of high pT charged hadrons have been measured in Au+Au collisions at sqrt[sNN]=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high pT partons. The monotonic rise of v2(pT) for pT<2 GeV/c is consistent with collective hydrodynamical flow calculations. At pT>3 GeV/c, a saturation of v2 is observed which persists up to pT=6 GeV/c.
Azimuthal anisotropy (v2) and two-particle angular correlations of high pT charged hadrons have been measured in Au+Au collisions at sqrt[sNN]=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high pT partons. The monotonic rise of v2(pT) for pT<2 GeV/c is consistent with collective hydrodynamical flow calculations. At pT>3 GeV/c, a saturation of v2 is observed which persists up to pT=6 GeV/c.
Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarelativistic nuclear collisions. Flow measurements also provide a means of distinguishing between hydrodynamic models and calculations which approach the low density (dilute gas) limit. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (nonflow correlations). Using data for Au + Au collisions at sqrt[sNN]=130 GeV from the STAR time projection chamber, it is found that four-particle correlation analyses can reliably separate flow and nonflow correlation signals. The latter account for on average about 15% of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also corrected for the effect of flow variations within centrality bins. This effect is negligible for all but the most central bin, where the correction to the elliptic flow is about a factor of 2. A simple new method for two-particle flow analysis based on scalar products is described. An analysis based on the distribution of the magnitude of the flow vector is also described.
We report the first observation of K*(892)0--> pi K in relativistic heavy ion collisions. The transverse momentum spectrum of (K*0+K*0)/2 from central Au+Au collisions at sqrt[sNN]=130 GeV is presented. The ratios of the K*0 yield derived from these data to the yields of negative hadrons, charged kaons, and phi mesons have been measured in central and minimum bias collisions and compared with model predictions and comparable e+e-, pp, and p-barp results. The data indicate no dramatic reduction of K*0 production in relativistic heavy ion collisions despite expected losses due to rescattering effects.
The STAR Collaboration reports the first observation of exclusive rho 0 photoproduction, AuAu-->AuAu rho 0, and rho 0 production accompanied by mutual nuclear Coulomb excitation, AuAu-->Au [star] Au [star] rho 0, in ultraperipheral heavy-ion collisions. The rho 0 have low transverse momenta, consistent with coherent coupling to both nuclei. The cross sections at sqrt[sNN]=130 GeV agree with theoretical predictions treating rho 0 production and Coulomb excitation as independent processes.
We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, Lambda , and Lambda -bar at midrapidity in Au+Au collisions at sqrt[sNN]=130 GeV at the Relativistic Heavy Ion Collider. The value of v2 as a function of transverse momentum, pt, of the produced particle and collision centrality is presented for both particles up to pt~3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.
Inclusive transverse momentum distributions of charged hadrons within 0.2<pT<6.0 GeV/c have been measured over a broad range of centrality for Au+Au collisions at sqrt[sNN]=130 GeV. Hadron yields are suppressed at high pT in central collisions relative to peripheral collisions and to a nucleon-nucleon reference scaled for collision geometry. Peripheral collisions are not suppressed relative to the nucleon-nucleon reference. The suppression varies continuously at intermediate centralities. The results indicate significant nuclear medium effects on high-pT hadron production in heavy-ion collisions at high energy.
We report the first measurement of strange ( Lambda ) and antistrange ( Lambda -bar) baryon production from sqrt[sNN]=130 GeV Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Rapidity density and transverse mass distributions at midrapidity are presented as a function of centrality. The yield of Lambda and Lambda -bar hyperons is found to be approximately proportional to the number of negative hadrons. The production of Lambda -bar hyperons relative to negative hadrons increases very rapidly with transverse momentum. The magnitude of the increase cannot be described by existing hadronic string fragmentation models alone.