Refine
Year of publication
Language
- English (143)
Has Fulltext
- yes (143)
Is part of the Bibliography
- no (143)
Keywords
- Heavy-ion collisions (4)
- Diffraction (3)
- Elastic scattering (3)
- Beam Energy Scan (2)
- Chiral Magnetic Effect (2)
- Collectivity (2)
- Correlation (2)
- Polarization (2)
- RHIC (2)
- STAR (2)
Institute
We present STAR measurements of the azimuthal anisotropy parameter v2 and the binary-collision scaled centrality ratio RCP for kaons and lambdas ( Lambda + Lambda -bar) at midrapidity in Au+Au collisions at sqrt[sNN]=200 GeV. In combination, the v2 and RCP particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish pT ~ 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K0S and Lambda + Lambda -bar v2 values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.
Measurements of the production of forward high-energy pi 0 mesons from transversely polarized proton collisions at sqrt[s]=200 GeV are reported. The cross section is generally consistent with next-to-leading order perturbative QCD calculations. The analyzing power is small at xF below about 0.3, and becomes positive and large at higher xF, similar to the trend in data at sqrt[s] <= 20 GeV. The analyzing power is in qualitative agreement with perturbative QCD model expectations. This is the first significant spin result seen for particles produced with pT>1 GeV/c at a polarized proton collider.
We report results on rho (770)0--> pi + pi - production at midrapidity in p+p and peripheral Au+Au collisions at sqrt[sNN]=200 GeV. This is the first direct measurement of rho (770)0--> pi + pi - in heavy-ion collisions. The measured rho 0 peak in the invariant mass distribution is shifted by ~40 MeV/c2 in minimum bias p+p interactions and ~70 MeV/c2 in peripheral Au+Au collisions. The rho 0 mass shift is dependent on transverse momentum and multiplicity. The modification of the rho 0 meson mass, width, and shape due to phase space and dynamical effects are discussed.
We report the first observations of the first harmonic (directed flow, v1) and the fourth harmonic (v4), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v2) generated at RHIC. From the correlation of v2 with v1 it is determined that v2 is positive, or in-plane. The integrated v4 is about a factor of 10 smaller than v2. For the sixth (v6) and eighth (v8) harmonics upper limits on the magnitudes are reported.
We present STAR measurements of charged hadron production as a function of centrality in Au+Au collisions at sqrt[sNN ]=130 GeV . The measurements cover a phase space region of 0.2< pT <6.0 GeV/c in transverse momentum and -1< eta <1 in pseudorapidity. Inclusive transverse momentum distributions of charged hadrons in the pseudorapidity region 0.5< | eta | <1 are reported and compared to our previously published results for | eta | <0.5 . No significant difference is seen for inclusive pT distributions of charged hadrons in these two pseudorapidity bins. We measured dN/d eta distributions and truncated mean pT in a region of pT > pcutT , and studied the results in the framework of participant and binary scaling. No clear evidence is observed for participant scaling of charged hadron yield in the measured pT region. The relative importance of hard scattering processes is investigated through binary scaling fraction of particle production.
Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sqrt[sNN]=200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+p at the same energy. The elliptic anisotropy v2 is found to reach its maximum at pt~3 GeV/c, then decrease slowly and remain significant up to pt ~ 7-10 GeV/c. Stronger suppression is found in the back-to-back high-pt particle correlations for particles emitted out of plane compared to those emitted in plane. The centrality dependence of v2 at intermediate pt is compared to simple models based on jet quenching.
Transverse energy ( ET ) distributions have been measured for Au+Au collisions at sqrt[sNN ]=200 GeV by the STAR Collaboration at RHIC. ET is constructed from its hadronic and electromagnetic components, which have been measured separately. ET production for the most central collisions is well described by several theoretical models whose common feature is large energy density achieved early in the fireball evolution. The magnitude and centrality dependence of ET per charged particle agrees well with measurements at lower collision energy, indicating that the growth in ET for larger collision energy results from the growth in particle production. The electromagnetic fraction of the total ET is consistent with a final state dominated by mesons and independent of centrality.
We present data on e+ e- pair production accompanied by nuclear breakup in ultraperipheral gold-gold collisions at a center of mass energy of 200 GeV per nucleon pair. The nuclear breakup requirement selects events at small impact parameters, where higher-order diagrams for pair production should be enhanced. We compare the data with two calculations: one based on the equivalent photon approximation, and the other using lowest-order quantum electrodynamics (QED). The data distributions agree with both calculations, except that the pair transverse momentum spectrum disagrees with the equivalent photon approach. We set limits on higher-order contributions to the cross section.
The transverse mass spectra and midrapidity yields for Xi s and Omega s are presented. For the 10% most central collisions, the Xi -bar+/h- ratio increases from the Super Proton Synchrotron to the Relativistic Heavy Ion Collider energies while the Xi -/h- stays approximately constant. A hydrodynamically inspired model fit to the Xi spectra, which assumes a thermalized source, seems to indicate that these multistrange particles experience a significant transverse flow effect, but are emitted when the system is hotter and the flow is smaller than values obtained from a combined fit to pi , K, p, and Lambda s.
The pseudorapidity asymmetry and centrality dependence of charged hadron spectra in d+Au collisions at sqrt[sNN ]=200 GeV are presented. The charged particle density at midrapidity, its pseudorapidity asymmetry, and centrality dependence are reasonably reproduced by a multiphase transport model, by HIJING, and by the latest calculations in a saturation model. Ratios of transverse momentum spectra between backward and forward pseudorapidity are above unity for pT below 5 GeV/c . The ratio of central to peripheral spectra in d+Au collisions shows enhancement at 2< pT <6 GeV/c , with a larger effect at backward rapidity than forward rapidity. Our measurements are in qualitative agreement with gluon saturation and in contrast to calculations based on incoherent multiple partonic scatterings.