Refine
Document Type
- Article (26)
Language
- English (26)
Has Fulltext
- yes (26)
Is part of the Bibliography
- no (26)
Keywords
- Bone density (4)
- Computed tomography (4)
- Osteoporosis (4)
- Magnetic resonance imaging (3)
- Multidetector computed tomography (3)
- Spine (3)
- Algorithms (2)
- COVID-19 (2)
- Computed Tomography (2)
- Osteoporotic fractures (2)
Institute
- Medizin (26)
Objectives: To assess the impact of noise-optimised virtual monoenergetic imaging (VMI+) on image quality and diagnostic evaluation in abdominal dual-energy CT scans with impaired portal-venous contrast.
Methods: We screened 11,746 patients who underwent portal-venous abdominal dual-energy CT for cancer staging between 08/2014 and 11/2019 and identified those with poor portal-venous contrast.
Standard linearly-blended image series and VMI+ image series at 40, 50, and 60 keV were reconstructed. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of abdominal organs and vascular structures were calculated. Image noise, image contrast and overall image quality were rated by three radiologists using 5-point Likert scale.
Results: 452 of 11,746 (4%) exams were poorly opacified. We excluded 190 cases due to incomplete datasets or multiple exams of the same patient with a final study group of 262. Highest CNR values in all abdominal organs (liver, 6.4 ± 3.0; kidney, 17.4 ± 7.5; spleen, 8.0 ± 3.5) and vascular structures (aorta, 16.0 ± 7.3; intrahepatic vein, 11.3 ± 4.7; portal vein, 15.5 ± 6.7) were measured at 40 keV VMI+ with significantly superior values compared to all other series. In subjective analysis, highest image contrast was seen at 40 keV VMI+ (4.8 ± 0.4), whereas overall image quality peaked at 50 keV VMI+ (4.2 ± 0.5) with significantly superior results compared to all other series (p < 0.001).
Conclusions: Image reconstruction using VMI+ algorithm at 50 keV significantly improves image contrast and image quality of originally poorly opacified abdominal CT scans and reduces the number of non-diagnostic scans.
Advances in knowledge: We validated the impact of VMI+ reconstructions in poorly attenuated DECT studies of the abdomen in a big data cohort.
Rationale and Objectives: Lumbar disk degeneration is a common condition contributing significantly to back pain. The objective of the study was to evaluate the potential of dual-energy CT (DECT)-derived collagen maps for the assessment of lumbar disk degeneration.
Patients and Methods: We conducted a retrospective analysis of 127 patients who underwent dual-source DECT and MRI of the lumbar spine between 07/2019 and 10/2022. The level of lumbar disk degeneration was categorized by three radiologists as follows: no/mild (Pfirrmann 1&2), moderate (Pfirrmann 3&4), and severe (Pfirrmann 5). Recall (sensitivity) and accuracy of DECT collagen maps were calculated. Intraclass correlation coefficient (ICC) was used to evaluate inter-reader reliability. Subjective evaluations were performed using 5-point Likert scales for diagnostic confidence and image quality.
Results: We evaluated a total of 762 intervertebral disks from 127 patients (median age, 69.7 (range, 23.0–93.7), female, 56). MRI identified 230 non/mildly degenerated disks (30.2%), 484 moderately degenerated disks (63.5%), and 48 severely degenerated disks (6.3%). DECT collagen maps yielded an overall accuracy of 85.5% (1955/2286). Recall (sensitivity) was 79.3% (547/690) for the detection of no/mild lumbar disk degeneration, 88.7% (1288/1452) for the detection of moderate disk degeneration, and 83.3% (120/144) for the detection of severe disk degeneration (ICC = 0.9). Subjective evaluations of DECT collagen maps showed high diagnostic confidence (median 4) and good image quality (median 4).
Conclusion: The use of DECT collagen maps to distinguish different stages of lumbar disk degeneration may have clinical significance in the early diagnosis of disk-related pathologies in patients with contraindications for MRI or in cases of unavailability of MRI.
Rationale and Objectives: Bone non-union is a serious complication of distal radius fractures (DRF) that can result in functional limitations and persistent pain. However, no accepted method has been established to identify patients at risk of developing bone non-union yet. This study aimed to compare various CT-derived metrics for bone mineral density (BMD) assessment to identify predictive values for the development of bone non-union.
Materials and Methods: CT images of 192 patients with DRFs who underwent unenhanced dual-energy CT (DECT) of the distal radius between 03/2016 and 12/2020 were retrospectively identified. Available follow-up imaging and medical health records were evaluated to determine the occurrence of bone non-union. DECT-based BMD, trabecular Hounsfield unit (HU), cortical HU and cortical thickness ratio were measured in normalized non-fractured segments of the distal radius.
Results: Patients who developed bone non-union were significantly older (median age 72 years vs. 54 years) and had a significantly lower DECT-based BMD (median 68.1 mg/cm3 vs. 94.6 mg/cm3, p < 0.001). Other metrics (cortical thickness ratio, cortical HU, trabecular HU) showed no significant differences. ROC and PR curve analyses confirmed the highest diagnostic accuracy for DECT-based BMD with an area under the curve (AUC) of 0.83 for the ROC curve and an AUC of 0.46 for the PR curve. In logistic regression models, DECT-based BMD was the sole metric significantly associated with bone non-union.
Conclusion: DECT-derived metrics can accurately predict bone non-union in patients who sustained DRF. The diagnostic performance of DECT-based BMD is superior to that of HU-based metrics and cortical thickness ratio.
Highlights
• MRI and ultrasound provided significant correlations between findings suggestive of vasculitis and the final diagnosis.
• Careful selection of available imaging techniques is warranted considering the time course, location, and clinical history.
• Considering its moderate diagnostic power to distinguish tracer uptake, a holistic view of PET/CT findings is essential.
Abstract
Purpose: To assess the diagnostic value of different imaging modalities in distinguishing systemic vasculitis from other internal and immunological diseases.
Methods: This retrospective study included 134 patients with suspected vasculitis who underwent ultrasound, magnetic resonance imaging (MRI), or 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) between 01/2010 and 01/2019, finally consisting of 70 individuals with vasculitis. The main study parameter was the confirmation of the diagnosis using one of the three different imaging modalities, with the adjudicated clinical and histopathological diagnosis as the gold standard. A secondary parameter was the morphological appearance of the vessel affected by vasculitis.
Results: Patients with systemic vasculitis had myriad clinical manifestations with joint pain as the most common symptom. We found significant correlations between different imaging findings suggestive of vasculitis and the final adjudicated clinical diagnosis. In this context, on MRI, vessel wall thickening, edema, and diameter differed significantly between vasculitis and non-vasculitis groups (p < 0.05). Ultrasound revealed different findings that may serve as red flags in identifying patients with vasculitis, such as vascular occlusion or halo sign (p = 0.02 vs. non-vasculitis group). Interestingly, comparing maximal standardized uptake values from PET/CT examinations with vessel wall thickening or vessel diameter did not result in significant differences (p > 0.05).
Conclusions: We observed significant correlations between different imaging findings suggestive of vasculitis on ultrasound or MRI and the final adjudicated diagnosis. While ultrasound and MRI were considered suitable imaging methods for detecting and discriminating typical vascular changes, 18F-FDG PET/CT requires careful timing and patient selection given its moderate diagnostic accuracy.
Purpose: To assess the diagnostic precision of three different workstations for measuring thoracic aortic aneurysms (TAAs) in vivo and ex vivo using either pre-interventional computed tomography angiography scans (CTA) or a specifically designed phantom model.
Methods: This retrospective study included 23 patients with confirmed TAA on routinely performed CTAs. In addition to phantom tube diameters, one experienced blinded radiologist evaluated the dimensions of TAAs on three different workstations in two separate rounds. Precision was assessed by calculating measurement errors. In addition, correlation analysis was performed using Pearson correlation.
Results: Measurements acquired at the Siemens workstation deviated by 3.54% (range, 2.78–4.03%; p = 0.14) from the true size, those at General Electric by 4.05% (range, 1.46–7.09%; p < 0.0001), and at TeraRecon by 4.86% (range, 3.22–6.45%; p < 0.0001). Accordingly, Siemens provided the most precise workstation at simultaneously most fluctuating values (scattering of 4.46%). TeraRecon had the smallest fluctuation (scattering of 2.83%), but the largest deviation from the true size of the phantom. The workstation from General Electric showed a scattering of 2.94%. The highest overall correlation between the 1st and 2nd rounds was observed with measurements from Siemens (r = 0.898), followed by TeraRecon (r = 0.799), and General Electric (r = 0.703). Repetition of measurements reduced processing times by 40% when using General Electric, by 20% with Siemens, and by 18% with TeraRecon.
Conclusions: In conclusion, all three workstations facilitated precise assessment of dimensions in the majority of cases at simultaneously high reproducibility, ensuring accurate pre-interventional planning of thoracic endovascular aortic repair.
Rationale and objectives: To provide a detailed analysis of injury patterns of the spine following blunt trauma and establish the role of supplementary MRI by evaluating discrepancies in the detection rates of damaged structures in CT and MRI.
Method: 216 patients with blunt trauma to the spine who underwent CT followed by supplementary MRI were included in this study. Two board-certified radiologists blinded to clinical symptoms and injury mechanisms independently interpreted all acquired CT and MRI images. The interpretation was performed using a dedicated catalogue of typical findings associated with spinal trauma and assessed for spinal stability using the AO classification systems.
Results: Lesions to structures associated with spinal instability were present in 31.0% in the cervical spine, 12.3% in the thoracic spine, and 29.9% in the lumbar spine. In all spinal segments, MRI provided additional information regarding potentially unstable injuries. Novel information derived from supplementary MRI changed clinical management in 3.6% of patients with injury to the cervical spine. No change in clinical management resulted from novel information on the thoracolumbar spine. Patients with injuries to the vertebral body, intervertebral disc, or spinous process were significantly more likely to benefit from supplementary MRI.
Conclusion: In patients that sustained blunt spinal trauma, supplementary MRI of the cervical spine should routinely be performed to detect injuries that require surgical treatment, whereas CT is the superior imaging modality for the detection of unstable injuries in the thoracolumbar spine.
Case report of rare congenital cardiovascular anomalies associated with truncus arteriosus type 2
(2022)
Truncus arteriosus (TA) is a very rare congenital anomaly with complex cardiovascular anatomy and high lethality also due to severe associated anatomical variants and pathologies. As TA has a massive impact on the survival of a newborn and usually has to be surgically treated. Thus, it is of high importance to understand this congenital cardiovascular disease and associated complications, to improve life expectancy and outcome of these patients. We recently came across a newborn female patient with a rare complex case of persistent TA type 2 associated with further complex cardiovascular anomalies, who received a contrast enhanced CT scan on the 3 rd day post-partum, showing complex cardiovascular abnormalities that were ultimately incompatible with life.
Vaccination represents one of the fundamentals in the fight against SARS-CoV-2. Myocarditis has been reported as a rare but possible adverse consequence of different vaccines, and its clinical presentation can range from mild symptoms to acute heart failure. We report a case of a 29-year-old man who presented with fever and retrosternal pain after receiving SARS-CoV-2 vaccine. Cardiac magnetic resonance imaging and laboratory data revealed typical findings of acute myocarditis.
Dual-energy CT (DECT) has emerged into clinical routine as an imaging technique with unique postprocessing utilities that improve the evaluation of different body areas. The virtual non-calcium (VNCa) reconstruction algorithm has shown beneficial effects on the depiction of bone marrow pathologies such as bone marrow edema. Its main advantage is the ability to substantially increase the image contrast of structures that are usually covered with calcium mineral, such as calcified vessels or bone marrow, and to depict a large number of traumatic, inflammatory, infiltrative, and degenerative disorders affecting either the spine or the appendicular skeleton. Therefore, VNCa imaging represents another step forward for DECT to image conditions and disorders that usually require the use of more expensive and time-consuming techniques such as magnetic resonance imaging, positron emission tomography/CT, or bone scintigraphy. The aim of this review article is to explain the technical background of VNCa imaging, showcase its applicability in the different body regions, and provide an updated outlook on the clinical impact of this technique, which goes beyond the sole improvement in image quality.