Refine
Has Fulltext
- yes (34)
Is part of the Bibliography
- no (34)
Keywords
Institute
- Physik (27)
- Medizin (5)
- Frankfurt Institute for Advanced Studies (FIAS) (4)
- Pharmazie (1)
- Universitätsbibliothek (1)
Determining the phase structure of Quantum Chromodynamics (QCD) and its Equation of State (EOS) at densities and temperatures realized inside neutron stars and their mergers is a long-standing open problem. The holographic V-QCD framework provides a model for the EOS of dense and hot QCD, which describes the deconfinement phase transition between a dense baryonic and a quark matter phase. We use this model in fully general relativistic hydrodynamic (GRHD) simulations to study the formation of quark matter and the emitted gravitational wave signal of binary systems that are similar to the first ever observed neutron star merger event GW170817.
Background Reward processing has been proposed to underpin atypical social behavior, a core feature of autism spectrum disorder (ASD). However, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social rewards in ASD. Utilizing a large sample, we aimed to assess altered reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD.
Methods Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6-30.5 years) and 181 typically developing (TD) participants (7.6-30.8 years).
Results Across social and monetary reward anticipation, whole-brain analyses (p<0.05, family-wise error-corrected) showed hypoactivation of the right ventral striatum (VS) in ASD. Further, region of interest (ROI) analysis across both reward types yielded hypoactivation in ASD in both the left and right VS. Across delivery of social and monetary reward, hyperactivation of the VS in individuals with ASD did not survive correction for multiple comparisons. Reward type by diagnostic group interactions, and a dimensional analysis of autism trait scores were not significant during anticipation or delivery. Levels of attention-deficit/hyperactivity disorder (ADHD) symptoms did not affect reward processing in ASD.
Conclusions Our results do not support current theories linking atypical social interaction in ASD to specific alterations in processing of social rewards. Instead, they point towards a generalized hypoactivity of VS in ASD during anticipation of both social and monetary rewards. We suggest that this indicates attenuated subjective reward value in ASD independent of social content and ADHD symptoms.
Social-communication (SC) and restricted repetitive behaviors (RRB) are autism diagnostic symptom domains. SC and RRB severity can markedly differ within and between individuals and may be underpinned by different neural circuitry and genetic mechanisms. Modeling SC-RRB balance could help identify how neural circuitry and genetic mechanisms map onto such phenotypic heterogeneity. Here we developed a phenotypic stratification model that makes highly accurate (97-99%) out-of-sample SC=RRB, SC>RRB, and RRB>SC subtype predictions. Applying this model to resting state fMRI data from the EU-AIMS LEAP dataset (n=509), we find that while the phenotypic subtypes share many commonalities in terms of intrinsic functional connectivity, they also show replicable differences within some networks compared to a typically-developing group (TD). Specifically, the somatomotor network is hypoconnected with perisylvian circuitry in SC>RRB and visual association circuitry in SC=RRB. The SC=RRB subtype show hyperconnectivity between medial motor and anterior salience circuitry. Genes that are highly expressed within these networks show a differential enrichment pattern with known autism-associated genes, indicating that such circuits are affected by differing autism-associated genomic mechanisms. These results suggest that SC-RRB imbalance subtypes share many commonalities, but also express subtle differences in functional neural circuitry and the genomic underpinnings behind such circuitry.
Background: Marked sex differences in autism prevalence accentuate the need to understand the role of biological sex-related factors in autism. Efforts to unravel sex differences in the brain organization of autism have, however, been challenged by the limited availability of female data.
Methods: We addressed this gap by using a large sample of males and females with autism and neurotypical (NT) control individuals (ABIDE; Autism: 362 males, 82 females; NT: 409 males, 166 females; 7-18 years). Discovery analyses examined main effects of diagnosis, sex and their interaction across five resting-state fMRI (R-fMRI) metrics (voxel-level Z > 3.1, cluster-level P < 0.01, gaussian random field corrected). Secondary analyses assessed the robustness of the results to different pre-processing approaches and their replicability in two independent samples: the EU-AIMS Longitudinal European Autism Project (LEAP) and the Gender Explorations of Neurogenetics and Development to Advance Autism Research (GENDAAR).
Results: Discovery analyses in ABIDE revealed significant main effects across the intrinsic functional connectivity (iFC) of the posterior cingulate cortex, regional homogeneity and voxel-mirrored homotopic connectivity (VMHC) in several cortical regions, largely converging in the default network midline. Sex-by-diagnosis interactions were confined to the dorsolateral occipital cortex, with reduced VMHC in females with autism. All findings were robust to different pre-processing steps. Replicability in independent samples varied by R-fMRI measures and effects with the targeted sex-by-diagnosis interaction being replicated in the larger of the two replication samples – EU-AIMS LEAP.
Limitations: Given the lack of a priori harmonization among the discovery and replication datasets available to date, sample-related variation remained and may have affected replicability.
Conclusions: Atypical cross-hemispheric interactions are neurobiologically relevant to autism. They likely result from the combination of sex-dependent and sex-independent factors with a differential effect across functional cortical networks. Systematic assessments of the factors contributing to replicability are needed and necessitate coordinated large-scale data collection across studies.
Competing Interest Statement: ADM receives royalties from the publication of the Italian version of the Social Responsiveness Scale Child Version by Organization Speciali, Italy. JKB has been a consultant to, advisory board member of, and a speaker for Takeda/Shire, Medice, Roche, and Servier. He is not an employee of any of these companies and not a stock shareholder of any of these companies. He has no other financial or material support, including expert testimony, patents, or royalties. CFB is director and shareholder in SBGneuro Ltd. TC has received consultancy from Roche and Servier and received book royalties from Guildford Press and Sage. DM has been a consultant to, and advisory board member, for Roche and Servier. He is not an employee of any of these companies, and not a stock shareholder of any of these companies. TB served in an advisory or consultancy role for Lundbeck, Medice, Neurim Pharmaceuticals, Oberberg GmbH, Shire, and Infectopharm. He received conference support or speakers fee by Lilly, Medice, and Shire. He received royalties from Hogrefe, Kohlhammer, CIP Medien, Oxford University Press; the present work is unrelated to these relationships. JT is a consultant to Roche. The remaining authors declare no competing interests.
Background: Autism Spectrum Disorder (henceforth ‘autism’) is a highly heterogeneous neurodevelopmental condition with few effective treatments for core and associated features. To make progress we need to both identify and validate neural markers that help to parse heterogeneity to tailor therapies to specific neurobiological profiles. Atypical hemispheric lateralization is a stable feature across studies in autism, however its potential of lateralization as a neural stratification marker has not been widely examined.
Methods: In order to dissect heterogeneity in lateralization in autism, we used the large EU-AIMS Longitudinal European Autism Project dataset comprising 352 individuals with autism and 233 neurotypical (NT) controls as well as a replication dataset from ABIDE (513 autism, 691 NT) using a promising approach that moves beyond mean-group comparisons. We derived grey matter voxelwise laterality values for each subject and modelled individual deviations from the normative pattern of brain laterality across age using normative modeling.
Results: Results showed that individuals with autism had highly individualized patterns of both extreme right- and leftward deviations, particularly in language-, motor- and visuospatial regions, associated with symptom severity. Language delay (LD) explained most variance in extreme rightward patterns, whereas core autism symptom severity explained most variance in extreme leftward patterns. Follow-up analyses showed that a stepwise pattern emerged with individuals with autism with LD showing more pronounced rightward deviations than autism individuals without LD.
Conclusion: Our analyses corroborate the need for novel (dimensional) approaches to delineate the heterogeneous neuroanatomy in autism, and indicate atypical lateralization may constitute a neurophenotype for clinically meaningful stratification in autism.
According to the inflationary theory of cosmology, most elementary particles in the current Universe were created during a period of reheating after inflation. In this Letter, we self-consistently couple the Einstein-inflaton equations to a strongly coupled quantum field theory as described by holography. We show that this leads to an inflating universe, a reheating phase, and finally a universe dominated by the quantum field theory in thermal equilibrium.
Background: Autism spectrum disorder (“autism”) is a highly heterogeneous neurodevelopmental condition with few effective treatments for core and associated features. To make progress we need to both identify and validate neural markers that help to parse heterogeneity to tailor therapies to specific neurobiological profiles. Atypical hemispheric lateralization is a stable feature across studies in autism, but its potential as a neural stratification marker has not been widely examined. Methods: In order to dissect heterogeneity in lateralization in autism, we used the large EU-AIMS (European Autism Interventions—A Multicentre Study for Developing New Medications) Longitudinal European Autism Project dataset comprising 352 individuals with autism and 233 neurotypical control subjects as well as a replication dataset from ABIDE (Autism Brain Imaging Data Exchange) (513 individuals with autism, 691 neurotypical subjects) using a promising approach that moves beyond mean group comparisons. We derived gray matter voxelwise laterality values for each subject and modeled individual deviations from the normative pattern of brain laterality across age using normative modeling. Results: Individuals with autism had highly individualized patterns of both extreme right- and leftward deviations, particularly in language, motor, and visuospatial regions, associated with symptom severity. Language delay explained most variance in extreme rightward patterns, whereas core autism symptom severity explained most variance in extreme leftward patterns. Follow-up analyses showed that a stepwise pattern emerged, with individuals with autism with language delay showing more pronounced rightward deviations than individuals with autism without language delay. Conclusions: Our analyses corroborate the need for novel (dimensional) approaches to delineate the heterogeneous neuroanatomy in autism and indicate that atypical lateralization may constitute a neurophenotype for clinically meaningful stratification in autism.
The ability to permeate accross the blood brain barrier (BBB) is essential for drugs acting on the central nervous system (CNS). Thus, systems that allow rapid and inexpensive screening of the BBB-permeability properties of novel lead compounds are of great importance for speeding up the drug discovery process in the CNS-area. We used immortalized porcine brain microvessel endothelial cells (PBMECICl-2) to develop a model for measurement of blood-brain barrier permeation of CNS active drugs. Investigation of different cell culture conditions showed, that a system using C6 astrocyte glioma conditioned medium and addition of a cyclic AMP analog in combination with a type IV phosphodiesterase inhibitor (R020-1724) leads to cell layers with transendothelial electrical resistance values up to 300 Ω.cm2. Permeability studies with U-[14C]sucroseg ave a permeability coefficient Pe of 3.24 + 0.14 × 10−4 cm/min, which is in good agreement to published values and thus indicates the formation of tight junctions in vitro.
We present the first holographic simulations of non-equilibrium steady state formation in strongly coupled N=4 SYM theory in 3+1 dimensions. We initially join together two thermal baths at different temperatures and chemical potentials and compare the subsequent evolution of the combined system to analytic solutions of the corresponding Riemann problem and to numeric solutions of ideal and viscous hydrodynamics. The time evolution of the energy density that we obtain holographically is consistent with the combination of a shock and a rarefaction wave: A shock wave moves towards the cold bath, and a smooth broadening wave towards the hot bath. Between the two waves emerges a steady state with constant temperature and flow velocity, both of which are accurately described by a shock+rarefaction wave solution of the Riemann problem. In the steady state region, a smooth crossover develops between two regions of different charge density. This is reminiscent of a contact discontinuity in the Riemann problem. We also obtain results for the entanglement entropy of regions crossed by shock and rarefaction waves and find both of them to closely follow the evolution of the energy density.
Bericht der Arbeitsgruppe Technik zur Vorbereitung des Programms "Retrospektive Digitalisierung von Bibliotheksbeständen" im Förderbereich "Verteilte Digitale Forschungsbibliothek" Arbeitssitzungen am 14. Mai 1996 (Frankfurt a. M.), 29.-30. Juli 1996 (München), 12.-13. Dezember 1996 (Göttingen) Mitglieder der Arbeitsgruppe: Prof. Dr. Rudolf Bayer, Technische Universität München, Fakultät für Informatik Dr. Jürgen Bunzel, Deutsche Forschungsgemeinschaft, Bonn Dr. Marianne Dörr, Bayerische Staatsbibliothek München Dr. Reinhard Ecker, Beilstein-Institut bzw. ABC Datenservice GmbH, Frankfurt/Main Dipl.-Math. Heinz-Werner Hoffmann, Hochschulbibliothekszentrum NRW, Köln (als Gast für die AG der Verbundsysteme) Dr. Norbert Lossau, Niedersächsische Staats- und Universitätsbibliothek Göttingen (DFG-Projekt ‘Verteilte Digitale Forschungsbibliothek’) Prof. Dr. Elmar Mittler, Niedersächsische Staats- und Universitätsbibliothek Göttingen Dipl.-Inf. Christian Mönch, FB Informatik der J.W. Goethe-Universität Frankfurt Dr. Wilhelm R. Schmidt, Stadt- und Universitätsbibliothek Frankfurt Dr. Hartmut Weber, Landesarchivdirektion, Stuttgart