Refine
Year of publication
Document Type
- Article (29)
Language
- English (29)
Has Fulltext
- yes (29)
Is part of the Bibliography
- no (29)
Keywords
- multiple sclerosis (6)
- Blood-brain barrier (2)
- Fingolimod (2)
- HOD (2)
- Hemorrhage (2)
- Holmes tremor (2)
- MCAO (2)
- Stroke (2)
- cerebellum (2)
- cerebral hemorrhage (2)
Institute
- Medizin (29)
- Pharmazie (3)
- Psychologie (2)
Objective: To determine whether the performance of multiple sclerosis (MS) patients in the sound-induced flash illusion (SiFi), a multisensory perceptual illusion, would reflect their cognitive impairment.
Methods: We performed the SiFi task as well as an extensive neuropsychological testing in 95 subjects [39 patients with relapse-remitting MS (RRMS), 16 subjects with progressive multiple sclerosis (PMS) and 40 healthy control subjects (HC)].
Results: MS patients reported more frequently the multisensory SiFi than HC. In contrast, there were no group differences in the control conditions. Essentially, patients with progressive type of MS continued to perceive the illusion at stimulus onset asynchronies (SOA) that were more than three times longer than the SOA at which the illusion was already disrupted for healthy controls. Furthermore, MS patients' degree of cognitive impairment measured with a broad neuropsychological battery encompassing tests for memory, attention, executive functions, and fluency was predicted by their performance in the SiFi task for the longest SOA of 500 ms.
Conclusions: These findings support the notion that MS patients exhibit an altered multisensory perception in the SiFi task and that their susceptibility to the perceptual illusion is negatively correlated with their neuropsychological test performance. Since MS lesions affect white matter tracts and cortical regions which seem to be involved in the transfer and processing of both crossmodal and cognitive information, this might be one possible explanation for our findings. SiFi might be considered as a brief, non-expensive, language- and education-independent screening test for cognitive deficits in MS patients.
Local anesthetics are commonly administered by nuchal infiltration to provide a temporary interscalene brachial plexus block (ISB) in a surgical setting. Although less commonly reported, local anesthetics can induce central nervous system toxicity. In this case study, we present three patients with acute central nervous system toxicity induced by local anesthetics applied during ISB with emphasis on neurological symptoms, key neuroradiological findings and functional outcome. Medical history, clinical and imaging findings, and outcome of three patients with local anesthetic-induced toxic left hemisphere syndrome during left ISB were analyzed. All patients were admitted to our neurological intensive care unit between November 2016 and September 2019. All three patients presented in poor clinical condition with impaired consciousness and left hemisphere syndrome. Electroencephalography revealed slow wave activity in the affected hemisphere of all patients. Seizure activity with progression to status epilepticus was observed in one patient. In two out of three patients, cortical FLAIR hyperintensities and restricted diffusion in the territory of the left internal carotid artery were observed in magnetic resonance imaging. Assessment of neurological severity scores revealed spontaneous partial reversibility of neurological symptoms. Local anesthetic-induced CNS toxicity during ISB can lead to severe neurological impairment and anatomically variable cerebral lesions.
Background: An inducible release of soluble junctional adhesion molecule-A (sJAM-A) under pro-inflammatory conditions was described in cultured non-CNS endothelial cells (EC) and increased sJAM-A serum levels were found to indicate inflammation in non-CNS vascular beds. Here we studied the regulation of JAM-A expression in cultured brain EC and evaluated sJAM-A as a serum biomarker of blood-brain barrier (BBB) function. Methodology/Principal Findings: As previously reported in non-CNS EC types, pro-inflammatory stimulation of primary or immortalized (hCMEC/D3) human brain microvascular EC (HBMEC) induced a redistribution of cell-bound JAM-A on the cell surface away from tight junctions, along with a dissociation from the cytoskeleton. This was paralleled by reduced immunocytochemical staining of occludin and zonula occludens-1 as well as by increased paracellular permeability for dextran 3000. Both a self-developed ELISA test and Western blot analysis detected a constitutive sJAM-A release by HBMEC into culture supernatants, which importantly was unaffected by pro-inflammatory or hypoxia/reoxygenation challenge. Accordingly, serum levels of sJAM-A were unaltered in 14 patients with clinically active multiple sclerosis compared to 45 stable patients and remained unchanged in 13 patients with acute ischemic non-small vessel stroke over time. Conclusion: Soluble JAM-A was not suited as a biomarker of BBB breakdown in our hands. The unexpected non-inducibility of sJAM-A release at the human BBB might contribute to a particular resistance of brain EC to inflammatory stimuli, protecting the CNS compartment.
Background: FTY720, an immunomodulator derived from a fungal metabolite which reduces circulating lymphocyte counts by increasing the homing of lymphocytes to the lymph nodes has recently gained interest in stroke research. The aim of this study was to evaluate the protective efficacy of FTY720 in cerebral ischemia in two different application paradigms and to gather first data on the effect of FTY720 on the rate of spontaneous bacterial infections in experimental stroke. Methods: Middle cerebral artery occlusion (MCAO) in C57BL/6 mice (strain J, groups of 10 animals) was performed with two different durations of ischemia (90 min and 3 h) and FTY720 was applied 2 h after vessel occlusion to study the impact of reperfusion on the protective potency of FTY720. Lesion size was determined by TTC staining. Mice treated with FTY720 or vehicle were sacrificed 48 h after 90 min MCAO to determine the bacterial burden in lung and blood. Results: FTY720 1 mg/kg significantly reduced ischemic lesion size when administered 2 h after the onset of MCAO for 3 h (45.4 +/- 22.7 mm3 vs. 84.7 +/- 23.6 mm3 in control mice, p = 0.001) and also when administered after reperfusion, 2 h after the onset of MCAO for 90 min (31.1 +/- 28.49 mm3 vs. 69.6 +/- 27.2 mm3 in control mice, p = 0.013). Bacterial burden of lung homogenates 48 h after stroke did not increase in the group treated with the immunomodulator FTY720 while there was no spontaneous bacteremia 48 h after MCAO in treated and untreated animals. Conclusions: Our results corroborate the experimental evidence of the protective effect of FTY720 seen in different rodent stroke models. Interestingly, we found no increase in bacterial lung infections even though FTY720 strongly reduces the number of circulating leukocytes.
Posterior fossa tumor surgery is challenging due to the proximity and exposure of cerebellar structures. A favorable operative approach is unknown. Following lesions to the dentato–rubro–olivary-pathway, a neurodegenerative disease called hypertrophic olivary degeneration (HOD) can occur. This study for the first time demonstrates that paravermal trans-cerebellar approaches are associated with a significantly higher likelihood of HOD on MRI when compared to other approaches. This finding can well be attributed to dentate nucleus (DN) injury. Furthermore, cerebellar mutism syndrome (CMS) was discussed in the literature to be correlated with HOD due to a functional overlap of pathways involved. We found no such correlation in this study, but HOD was shown to be a reliable indicator for surgical disruption of efferent cerebellar pathways involving the DN. Henceforth, neurosurgeons should consider more midline or lateral approaches in posterior fossa surgery to spare the DN whenever feasible, and focus on cerebellar functional anatomy in their preoperative planning.
Ischemic lesion location based on the ASPECT score for risk assessment of neurogenic dysphagia
(2020)
Dysphagia is common in patients with middle cerebral artery (MCA) infarctions and associated with malnutrition, pneumonia, and mortality. Besides bedside screening tools, brain imaging findings may help to timely identify patients with swallowing disorders. We investigated whether the Alberta stroke program early CT score (ASPECTS) allows for the correlation of distinct ischemic lesion patterns with dysphagia. We prospectively examined 113 consecutive patients with acute MCA infarctions. Fiberoptic endoscopic evaluation of swallowing (FEES) was performed within 24 h after admission for validation of dysphagia. Brain imaging (CT or MRI) was rated for ischemic changes according to the ASPECT score. 62 patients (54.9%) had FEES-proven dysphagia. In left hemispheric strokes, the strongest associations between the ASPECTS sectors and dysphagia were found for the lentiform nucleus (odds ratio 0.113 [CI 0.028–0.433; p = 0.001), the insula (0.275 [0.102–0.742]; p = 0.011), and the frontal operculum (0.280 [CI 0.094–0.834]; p = 0.022). A combination of two or even all three of these sectors together increased relative dysphagia frequency up to 100%. For right hemispheric strokes, only non-significant associations were found which were strongest for the insula region. The distribution of early ischemic changes in the MCA territory according to ASPECTS may be used as risk indicator of neurogenic dysphagia in MCA infarction, particularly when the left hemisphere is affected. However, due to the exploratory nature of this research, external validation studies of these findings are warranted in future.
(1) Background: A lesion within the dentato-rubro-olivary pathway (DROP) in the posterior fossa can cause secondary neurodegeneration of the inferior olivary nucleus: so-called hypertrophic olivary degeneration (HOD). The clinical syndrome of HOD occurs slowly over months and may be overlooked in progressive neuro-oncological diseases. Posterior fossa tumors are often located near these strategic structures. The goal of this study was to analyze the systematics of HOD occurrence in neuro-oncological patients.
(2) Methods: The neuroradiological database of the university healthcare center was scanned for HOD-related terms from 2010 to 2019. After excluding patients with other causes of HOD, 12 datasets from neuro-oncological patients were analyzed under predetermined criteria.
(3) Results: Patients received multimodal tumor treatments including neurosurgery, radiotherapy, and chemotherapy. HOD occurred both unilaterally (left n = 4; right n = 5) and bilaterally (n = 3). Though the mass effect of posterior fossa tumors had already affected strategic structures of the DROP, none of the patients showed signs of HOD on MRI until therapeutic measures including neurosurgery affecting the DROP were applied. HOD was visible on MRI within a median of 6 months after the neurosurgical intervention. In 67%, the presumed underlying surgical lesion in the DROP lay in the contralateral dentate nucleus.
(4) Conclusion: In a selected cohort of neuro-oncological patients, therapeutic lesions within the DROP were associated with HOD occurrence.
Dual antiplatelet treatment (DAPT) increases the risk of tPA-associated hemorrhagic transformation (HT) in ischemic stroke. To investigate the effects of DAPT in rodents, reliable indicators of platelet function utilizing a minimally invasive procedure are required. We here established a fluorescence-based assay to monitor DAPT efficiency in a mouse model of ischemic stroke with HT. Male C57/BL6 mice were fed with aspirin and clopidogrel (ASA+CPG). Venous blood was collected, stimulated with thrombin, labeled with anti-CD41-FITC and anti-CD62P-PE, and analyzed by flow cytometry. Subsequently, animals were subjected to experimental stroke and tail bleeding tests. HT was quantified using NIH ImageJ software. In ASA+CPG mice, the platelet activation marker CD62P was reduced by 40.6 ± 4.2% (p < 0.0001) compared to controls. In vitro platelet function correlated inversely with tail bleeding tests (r = −0.8, p = 0.0033, n = 12). Twenty-four hours after drug withdrawal, platelet activation rates in ASA+CPG mice were still reduced by 20.2 ± 4.1% (p = 0.0026) compared to controls, while tail bleeding volumes were increased by 4.0 ± 1.4 μl (p = 0.004). Conventional tests using light transmission aggregometry require large amounts of blood and thus cannot be used in experimental stroke studies. In contrast, flow cytometry is a highly sensitive method that utilizes small volumes and can easily be incorporated into the experimental stroke workflow. Our test can be used to monitor the inhibitory effects of DAPT in mice. Reduced platelet activation is indicative of an increased risk for tPA-associated cerebral hemorrhage following experimental stroke. The test can be applied to individual animals and implemented flexibly prior and subsequent to experimental stroke.
Anticoagulation with warfarin and rivaroxaban ameliorates experimental autoimmune encephalomyelitis
(2017)
Background: In multiple sclerosis, coagulation factors have been shown to modulate inflammation. In this translational study, we investigated whether long-term anticoagulation with warfarin or rivaroxaban has beneficial effects on the course of autoimmune experimental encephalomyelitis (EAE).
Methods: Female SJL/J mice treated with anticoagulants namely warfarin or rivaroxaban were immunized with PLP139–151. Stable anticoagulation was maintained throughout the entire experiment. Mice without anticoagulation treated with the vehicle only were used as controls. The neurological deficit was recorded during the course of EAE, and histopathological analyses of inflammatory lesions were performed.
Results: In preventive settings, both treatment with warfarin and rivaroxaban reduced the maximum EAE score as compared to the control group and led to a reduction of inflammatory lesions in the spinal cord. In contrast, therapeutic treatment with warfarin had no beneficial effects on the clinical course of EAE. Signs of intraparenchymal hemorrhage at the site of the inflammatory lesions were not observed.
Conclusion: We developed long-term anticoagulation models that allowed exploring the course of EAE under warfarin and rivaroxaban treatment. We found a mild preventive effect of both warfarin and rivaroxaban on neurological deficits and local inflammation, indicating a modulation of the disease induction by anticoagulation.
Dysregulation of lysophosphatidic acids in multiple sclerosis and autoimmune encephalomyelitis
(2017)
Bioactive lipids contribute to the pathophysiology of multiple sclerosis. Here, we show that lysophosphatidic acids (LPAs) are dysregulated in multiple sclerosis (MS) and are functionally relevant in this disease. LPAs and autotaxin, the major enzyme producing extracellular LPAs, were analyzed in serum and cerebrospinal fluid in a cross-sectional population of MS patients and were compared with respective data from mice in the experimental autoimmune encephalomyelitis (EAE) model, spontaneous EAE in TCR1640 mice, and EAE in Lpar2 -/- mice. Serum LPAs were reduced in MS and EAE whereas spinal cord LPAs in TCR1640 mice increased during the ‘symptom-free’ intervals, i.e. on resolution of inflammation during recovery hence possibly pointing to positive effects of brain LPAs during remyelination as suggested in previous studies. Peripheral LPAs mildly re-raised during relapses but further dropped in refractory relapses. The peripheral loss led to a redistribution of immune cells from the spleen to the spinal cord, suggesting defects of lymphocyte homing. In support, LPAR2 positive T-cells were reduced in EAE and the disease was intensified in Lpar2 deficient mice. Further, treatment with an LPAR2 agonist reduced clinical signs of relapsing-remitting EAE suggesting that the LPAR2 agonist partially compensated the endogenous loss of LPAs and implicating LPA signaling as a novel treatment approach.