Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- NMDA receptor (1)
- NR1 antagonist (1)
- NR3 subunit (1)
- Zn2+ (1)
- excitatory glycine receptor (1)
- ligand-binding domain (1)
- supralinear potentiation (1)
- voltage block (1)
Institute
- Biowissenschaften (1)
- Pharmazie (1)
Der zur Familie der ionotropen Glutamatrezeptoren gehörende N-Methyl-DAspartat (NMDA)-Rezeptor ist maßgeblich an der Weiterleitung erregender Signale zwischen Nervenzellen beteiligt. Er spielt sowohl physiologisch bei z.B. Vorgängen des Lernens oder der Gedächtnisbildung, als auch pathophysiologisch bei neurologischen Erkrankungen eine entscheidende Rolle. NMDA-Rezeptoren sind tetramere Membranproteine, welche aus den homologen NR1-, NR2A-NR2D- sowie NR3A- und NR3B-Untereinheiten aufgebaut sind. Die Untereinheiten sind modular aus jeweils vier verschiedenen Domänen aufgebaut, die spezifische Rollen beim Aufbau und der Funktion der Rezeptoren erfüllen. Konventionelle NR1/NR2-NMDA-Rezeptoren bestehen aus zwei Glyzin-bindenden NR1- und zwei Glutamat-bindenden NR2-Untereinheiten. Sie werden nur durch gleichzeitiges Binden der Agonisten Glutamat und Glyzin effizient aktiviert. Ziel der vorliegenden Arbeit war, den Einfluss der extrazellulären N-terminalen Domänen (NTDs) auf die Assemblierung, Funktion und allosterische Modulation von rekombinanten NR1/NR2 NMDA-Rezeptoren mittels biochemischer und elektrophysiologischer Methoden zu untersuchen. Deletionsexperimente zeigten, dass die NTDs von NR1- und NR2A- bzw. NR2B-Untereinheiten die hochaffine, allosterische Zn2+- und Ifenprodil-Hemmung bestimmen, nicht aber für die Bildung funktioneller Rezeptoren von Bedeutung sind. Die NR2-NTDs stellen zusätzlich eine entscheidende strukturelle Determinate für die unterschiedliche Glyzinaffinität von NR1/NR2A- und NR1/NR2B-Rezeptoren dar. Ein zweiter Aspekt war die funktionelle Charakterisierung von NMDA-Rezeptoren, welche aus NR1- und NR3-Untereinheiten aufgebaut sind. Diese exzitatorischen NR1/NR3-Rezeptoren werden ausschließlich durch den Neurotransmitter Glyzin aktiviert und generieren nur sehr kleine Agonistaktivierte Ströme im Vergleich zu NMDA-Rezeptoren vom NR1/NR2-Typ. Es wurde gefunden, dass die Glyzinbindung an die NR1- und NR3-Ligandenbindungsdomänen (LBDs) entgegengesetzte Wirkungen auf die Rezeptorfunktion zur Folge hat. Während die NR3-LBD essentiell für die Aktivierung des Rezeptors ist, bewirkt Glyzin über die NR1-LBD eine Hemmung der NR1/NR3-Rezeptoren. Das erklärt die geringe Effizienz der Rezeptoraktivierung durch Glyzin. Weiterhin zeigen die Ergebnisse zum ersten Mal, dass Zn2+ an diesen Rezeptoren als Agonist und positiver Modulator wirkt und in Kombination mit einem NR1-Antagonisten die Glyzin-aktivierten Ströme >120-fach in supralinearer Weise potenzieren kann. Mutationsanalysen ergaben, dass die NR1-LBD für die Zn2+-Aktivierung und –Potenzierung verantwortlich ist. Da die physiologische Rolle von NR1/NR3-Rezeptoren noch nicht eindeutig geklärt ist, könnte die supralineare Potenzierung eine Strategie darstellen, diesen unkonventionellen NMDA-Rezeptor in zukünftigen Untersuchungen besser zu detektieren und zu charakterisieren. Zusammenfassend liefern die in dieser Arbeit gewonnenen Erkenntnisse zu Struktur-Funktionsbeziehungen in NMDA-Rezeptoren auf Ebene der NTDs und LBDs einen wichtigen Beitrag für das Verständnis der Pharmakologie dieser Rezeptorfamilie. Diese Ergebnisse können für die Entwicklung neuer neurologischer Therapeutika genutzt werden.
Potentiation of glycine-gated NR1/NR3A NMDA receptors relieves Ca2+-dependent outward rectification
(2010)
Glycine has diverse functions within the mammalian central nervous system. It inhibits postsynaptic neurons via strychnine-sensitive glycine receptors (GlyRs) and enhances neuronal excitation through co-activation of N-methyl-D-aspartate (NMDA) receptors. Classical Ca2+-permeable NMDA receptors are composed of glycine-binding NR1 and glutamate-binding NR2 subunits, and hence require both glutamate and glycine for efficient activation. In contrast, recombinant receptors composed of NR1 and the glycine binding NR3A and/or NR3B subunits lack glutamate binding sites and can be activated by glycine alone. Therefore these receptors are also named “excitatory glycine receptors”. Co-application of antagonists of the NR1 glycine-binding site or of the divalent cation Zn2+ markedly enhances the glycine responses of these receptors. To gain further insight into the properties of these glycine-gated NMDA receptors, we investigated their current-voltage (I–V) dependence. Whole-cell current-voltage relations of glycine currents recorded from NR1/NR3B and NR1/NR3A/NR3B expressing oocytes were found to be linear under our recording conditions. In contrast, NR1/NR3A receptors displayed a strong outwardly rectifying I–V relation. Interestingly, the voltage-dependent inward current block was abolished in the presence of NR1 antagonists, Zn2+ or a combination of both. Further analysis revealed that Ca2+ (1.8 mM) present in our recording solutions was responsible for the voltage-dependent inhibition of ion flux through NR1/NR3A receptors. Since physiological concentrations of the divalent cation Mg2+ did not affect the I–V dependence, our data suggest that relief of the voltage-dependent Ca2+ block of NR1/NR3A receptors by Zn2+ may be important for the regulation of excitatory glycinergic transmission, according to the Mg2+-block of conventional NR1/NR2 NMDA receptors. Keywords: NMDA receptor, excitatory glycine receptor, voltage block, NR3 subunit, supralinear potentiation, Zn2+, NR1 antagonist, ligand-binding domain