Refine
Document Type
- Article (20)
Has Fulltext
- yes (20)
Is part of the Bibliography
- no (20)
Keywords
- ergonomics (4)
- inertial motion capture (4)
- kinematic analysis (3)
- Healthy adults (2)
- Musculoskeletal system (2)
- RULA (2)
- inertial motion units (2)
- musculoskeletal disorders (2)
- Anatomy (1)
- Back scan (1)
Institute
Standard values of the upper body posture in healthy adults with special regard to age, sex and BMI
(2023)
In order to classify and analyze the parameters of upper body posture in clinical or physiotherapeutic settings, a baseline in the form of standard values with special regard to age, sex and BMI is required. Thus, subjectively healthy men and women aged 21–60 years were measured in this project. The postural parameters of 800 symptom-free male (n = 397) and female (n = 407) volunteers aged 21–60 years (Ø♀: 39.7 ± 11.6, Ø ♂: 40.7 ± 11.5 y) were studied. The mean height of the men was 1.8 ± 0.07 m, with a mean body weight of 84.8 ± 13.1 kg and an average BMI of 26.0 ± 3.534 kg/m2. In contrast, the mean height of the women was 1.67 ± 0.06 m, with a mean body weight of 66.5 ± 12.7 kg and an average BMI of 23.9 ± 4.6 kg/m2. By means of video rasterstereography, a 3-dimensional scan of the upper back surface was measured when in a habitual standing position. The means or medians, confidence intervals, tolerance ranges, the minimum, 2.5, 25, 50, 75, 97.5 percentiles and the maximum, plus the kurtosis and skewness of the distribution, were calculated for all parameters. Additionally, ANOVA and a factor analyses (sex, BMI, age) were conducted. In both sexes across all age groups, balanced, symmetrical upper body statics were evident. Most strikingly, the females showed greater thoracic kyphosis and lumbar lordosis angles (kyphosis: Ø ♀ 56°, Ø♂ 51°; lordosis: Ø ♀ 49°, Ø♂ 32°) and lumbar bending angles (Ø ♀ 14°, Ø♂ 11°) than the males. The distance between the scapulae was more pronounced in men. These parameters also show an increase with age and BMI, respectively. Pelvic parameters were independent of age and sex. The upper body postures of women and men between the ages of 21 and 60 years were found to be almost symmetrical and axis-conforming with a positive correlation for BMI or age. Consequently, the present body posture parameters allow for comparisons with other studies, as well as for the evaluation of clinical (interim) diagnostics and applications.
Background: Musculoskeletal disorders (MSD) are common among dental professionals. The most common areas affected are the trunk, neck, shoulders and wrists. Current evidence suggests that the causes of MSD can be found in the physical demands of the profession. Posture and movement during treatment is influenced by the arrangement of the treatment concept (patient chair, equipment and cabinets). It has not been investigated whether the ergonomic risk differs between the treatment concepts.
Methods: To evaluate the prevalence of MSD in dental professionals, 1000 responses will be collected from a nationwide (Germany) online questionnaire (mod. Nordic Questionnaire and mod. Meyer questionnaire). In order to assess the ergonomic risk of the treatment techniques used in the four treatment concepts, 3D movement analyses are carried out with inertial sensors. For this purpose, 20 teams of dentists and dental assistants from four dental fields of specializations (generalists, orthodontists, endodontists and oral surgeons) and a student control group will be recruited. Each team will execute field specific standardized treatments at a dummy head. Measurements are carried out in each of the four treatment concepts. The data will be analyzed using the Rapid Upper Limb Assessment (RULA) which will be modified for the evaluation of objective data.
Conclusions: On the basis of these investigations, a substantial gain of knowledge regarding work-related MSD in the field of dentistry and its potential biomechanical causes is possible. For the first time, objective and differentiated comparisons between the four treatment concepts are possible for different fields of dental specialization. Up to now, statically held positions of the trunk and proximal upper extremities, but also the repetitive movements of the hands have been considered a risk for MSD. Since both are included in the RULA, dental activities can be assessed in a detailed but also global manner with regard to ergonomic risks.
Zur ergonomischen Beurteilung von Arbeitsplätzen werden „ergonomic risk assessment tools“ (ERAT) verwendet. Mithilfe dieser kann die körperliche Belastung evaluiert und hinsichtlich eines biomechanischen Überlastungsrisikos bewertet werden. Dazu gehören neben Eigenangaben auch observatorische Methoden, deren Ergebnisse in Punktwerten („Scores“) zusammengefasst werden, wie z. B. die RULAMethode („rapid upper limb assessment“). Durch die technische Weiterentwicklung direkter Messmethoden können inertiale Motion-Capture-Systeme im 21. Jahrhundert präzise und kontinuierliche objektive Daten liefern. In einem neuen Ansatz wurde die observatorische Scoring-Methode RULA modifiziert und auf die digital erhobenen Daten angewendet, was differenzierte ergonomische Betrachtungen ganzer Arbeitsabläufe ermöglicht.
Musculoskeletal disorders of the trunk and neck are common among cleaners. Vacuum cleaning is a demanding activity. The aim of this study was to present the movement profile of the trunk and neck during habitual vacuuming. The data were collected from 31 subjects (21f./10 m) using a 3D motion analysis system (Xsens). 10 cycles were analysed in vacuuming PVC and carpet floors with 8 vacuum cleaners. The joint angles and velocities were represented statistically descriptive. When vacuuming, the trunk is held in a forwardly inclined position by a flexion in the hip and rotated from this position. In the joint angles and velocities of the spine, the rotation proved to be dominant. A relatively large amount of movement took place in the cervical spine and also in the lumbar spine. The shown movement profile is rather a comfort area of vacuuming which may serve as a reference for ergonomics in vacuuming.
Comparative values are essential for the classification of orthopedic abnormalities and the assessment of a necessary therapy. At present, reference values for the upper body posture for healthy, male adults exist for the age groups of 18–35, 31–40 and 41–50 years. However, corresponding data on the decade of 51 to 60 year-old healthy men are still lacking. 23 parameters of the upper body posture were analyzed in 102 healthy male participants aged 51–60 (55.36 ± 2.78) years. The average height was 180.76 ± 7.81 cm with a weight of 88.22 ± 14.57 kg. The calculated BMI was 26.96 ± 3.92 kg/m2. In the habitual, upright position, the bare upper body was scanned three-dimensionally using video raster stereography. Mean or median values, confidence intervals, tolerance ranges and group comparisons, as well as correlations of BMI and physical activity, were calculated for all parameters. The spinal column parameters exhibited a good exploration of the frontal plane in the habitual standing position. In the sagittal plane, a slight, ventral inclination of the trunk with an increased kyphosis angle of the thoracic spine and increased thoracic bending angle was observed. The parameters of the pelvis showed a pronounced symmetry with deviations from the 0° axis within the measurement error margin of 1 mm/1°. The scapula height together with the scapula angles of the right and left side described a slightly elevated position of the left shoulder compared to the right side. The upper body posture is influenced by parameters of age, height, weight and BMI. Primarily there are significant correlations to measurements of trunk lengths D (age: p ≤ 0.02, rho = -0.23; height: p ≤ 0.001, rho = 0.58; weight: p ≤ 0.001, rho = 0.33), trunk lengths S (age: p ≤ 0.01, rho = -0.27; height: p ≤ 0.001, rho = 0.58; weight: p ≤ 0.001, rho = 0.32), pelvic distance (height: p ≤ 0.01, rho = 0.26; weight: p ≤ 0.001, rho = 0.32; BMI: p ≤ 0.03, rho = 0.22) and scapula distance (weight: p ≤ 0.001, rho = .32; BMI: p ≤ 0.01, rho = 0.27), but also to sagittal parameters of trunk decline (weight: p ≤ 0.001, rho = -0.29; BMI: p ≤ 0.01, rho = -0.24), thoracic bending angle (height: p ≤ 0.01, rho = 0.27) and kyphosis angle (BMI: p ≤ 0.03, rho = 0.21). The upper body posture of healthy men between the ages of 51 and 60 years was axially almost aligned and balanced. With the findings of this investigation and the reference values obtained, suitable comparative values for use in clinical practice and for further scientific studies with the same experimental set-up have been established.
In the application of range of motion (ROM) tests there is little agreement on the number of repetitions to be measured and the number of preceding warm-up protocols. In stretch training a plateau in ROM gains can be seen after four to five repetitions. With increasing number of repetitions, the gain in ROM is reduced. This study examines the question of whether such an effect occurs in common ROM tests. Twenty-two healthy sport students (10 m/12 f.) with an average age of 25.3 ± 1.94 years (average height 174.1 ± 9.8 cm; weight 66.6 ± 11.3 kg and BMI 21.9 ± 2.0 kg/cm2) volunteered in this study. Each subject performed five ROM tests in a randomized order—measured either via a tape measure or a digital inclinometer: Tape measure was used to evaluate the Fingertip-to-Floor test (FtF) and the Lateral Inclination test (LI). Retroflexion of the trunk modified after Janda (RF), Thomas test (TT) and a Shoulder test modified after Janda (ST) were evaluated with a digital inclinometer. In order to show general acute effects within 20 repetitions we performed ANOVA/Friedman-test with multiple comparisons. A non-linear regression was then performed to identify a plateau formation. Significance level was set at 5%. In seven out of eight ROM tests (five tests in total with three tests measured both left and right sides) significant flexibility gains were observed (FtF: p < 0.001; LI-left/right: p < 0.001/0.001; RF: p = 0.009; ST-left/right: p < 0.001/p = 0.003; TT-left: p < 0.001). A non-linear regression with random effects was successfully applied on FtF, RF, LI-left/right, ST-left and TT-left and thus, indicate a gradual decline in the amount of gained ROM. An acute effect was observed in most ROM tests, which is characterized by a gradual decline of ROM gain. For those tests, we can state that the acute effect described in the stretching literature also applies to the performance of typical ROM tests. Since a non-linear behavior was shown, it is the decision of the practitioner to weigh up between measurement accuracy and expenditure. Researchers and practitioners should consider this when applying ROM assessments to healthy young adults.
Background: Temporary occlusal changes and their influence on the upper body statics are still controversially discussed. Furthermore, concrete statements on whether age- or gender-specific differences in neurophysiological reactions exist are missing. Therefore, it is the aim of this study to evaluate the immediate effects of a symmetrical occlusion blocking on the upper body posture. These effects shall be investigated for both genders and for a larger age range.
Methods: In this study, 800 (407f/393 m) subjects volunteered aged from 21 to 60 years. Both genders were divided into four age groups according to decades. The three-dimensional upper body posture was measured by using the rasterstereography (ABW-Bodymapper). The habitual static posture was measured in two dental occlusion conditions (a) in rest position and (b) symmetrical blocking in the bicuspid region by cotton rolls.
Results: A significant reduction of the trunk length (0.72 mm; p < 0.001), an increase of the lumbar (0.30°; p < 0.001) and the thoracic bending angle (0.14°; p = 0.001), a reduction of the spinal forward decline (0.16°; p < 0.001) and a reduction of the scapular distance (0.36 mm; p = 0.001) was found. Gender-specific reactions can only be recorded in scapular distance, in that regard men reduce this distance while over all age groups women did not show a significant change.
Discussion: Slight gender- and age-independent reactions due to a symmetric occlusion blockade are shown: A gender independent reaction of the spinal related variables in the sagittal plane (thoracic and lumbar flexion angle, trunk length, spinal forward decline). In addition, a gender specific change of the shoulder blade distance could be observed, where men reduced the distance while female did not show a change. However, since these reactions are of a minimum amount, it can be concluded that neurophysiological compensation mechanisms work equally well regardless of age and sex, and the upper body posture of healthy people changes only very slightly due to a temporarily symmetrical altered bite position.
Background: Vacuum cleaning, which is associated with musculoskeletal complaints, is frequently carried out in private households and by professional cleaners. The aim of this pilot study was to quantify the movements during habitual vacuuming and to characterize the movement profile with regard to its variability. Methods: The data were collected from 31 subjects (21 f/10 m) using a 3D motion analysis system (XSens). Eight vacuum cleaners were used to vacuum polyvinyl chloride (PVC) and carpet floors. In 15 joints of the right upper extremity, the trunk and the lower extremities, Principal Component Analysis was used to determine the predominantly varying joints during vacuuming. Results: The movements of the trunk and the lower extremities were relatively constant and, therefore, had less influence. The shoulder, elbow and wrist joints were identified as joints that can be decisive for the movement profile and that can be influenced. These joints were represented in the course of the vacuuming cycle by the mean movement with its standard deviation. Conclusion: In summary, the generalization of a movement profile is possible for the trunk and the lower extremities due to the relative homogeneity. In future it will be necessary to identify factors influencing variability in order to draw conclusions about movement ergonomics.
Background: In general, the prevalence of work-related musculoskeletal disorders (WMSD) in dentistry is high, and dental assistants (DA) are even more affected than dentists (D). Furthermore, differentiations between the fields of dental specialization (e.g., general dentistry, endodontology, oral and maxillofacial surgery, or orthodontics) are rare. Therefore, this study aims to investigate the ergonomic risk of the aforementioned four fields of dental specialization for D and DA on the one hand, and to compare the ergonomic risk of D and DA within each individual field of dental specialization. Methods: In total, 60 dentists (33 male/27 female) and 60 dental assistants (11 male/49 female) volunteered in this study. The sample was composed of 15 dentists and 15 dental assistants from each of the dental field, in order to represent the fields of dental specialization. In a laboratory setting, all tasks were recorded using an inertial motion capture system. The kinematic data were applied to an automated version of the Rapid Upper Limb Assessment (RULA). Results: The results revealed significantly reduced ergonomic risks in endodontology and orthodontics compared to oral and maxillofacial surgery and general dentistry in DAs, while orthodontics showed a significantly reduced ergonomic risk compared to general dentistry in Ds. Further differences between the fields of dental specialization were found in the right wrist, right lower arm, and left lower arm in DAs and in the neck, right wrist, right lower arm, and left wrist in Ds. The differences between Ds and DAs within a specialist discipline were rather small. Discussion: Independent of whether one works as a D or DA, the percentage of time spent working in higher risk scores is reduced in endodontologists, and especially in orthodontics, compared to general dentists or oral and maxillofacial surgeons. In order to counteract the development of WMSD, early intervention should be made. Consequently, ergonomic training or strength training is recommended.
Traditional ergonomic risk assessment tools such as the Rapid Upper Limb Assessment (RULA) are often not sensitive enough to evaluate well-optimized work routines. An implementation of kinematic data captured by inertial sensors is applied to compare two work routines in dentistry. The surgical dental treatment was performed in two different conditions, which were recorded by means of inertial sensors (Xsens MVN Link). For this purpose, 15 (12 males/3 females) oral and maxillofacial surgeons took part in the study. Data were post processed with costume written MATLAB® routines, including a full implementation of RULA (slightly adjusted to dentistry). For an in-depth comparison, five newly introduced levels of complexity of the RULA analysis were applied, i.e., from lowest complexity to highest: (1) RULA score, (2) relative RULA score distribution, (3) RULA steps score, (4) relative RULA steps score occurrence, and (5) relative angle distribution. With increasing complexity, the number of variables times (the number of resolvable units per variable) increased. In our example, only significant differences between the treatment concepts were observed at levels that are more complex: the relative RULA step score occurrence and the relative angle distribution (level 4 + 5). With the presented approach, an objective and detailed ergonomic analysis is possible. The data-driven approach adds significant additional context to the RULA score evaluation. The presented method captures data, evaluates the full task cycle, and allows different levels of analysis. These points are a clear benefit to a standard, manual assessment of one main body position during a working task.