Refine
Document Type
- Article (10)
Language
- English (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- Digital workshops (1)
- Intersectoral care (1)
- Intervention development (1)
- Methods (1)
- Patient and public Involvement (1)
- Patient participation (1)
- Polypharmacy (1)
- Research design (1)
- Stakeholder participation (1)
Institute
- Geowissenschaften (6)
- Medizin (3)
- Geowissenschaften / Geographie (1)
In situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS) clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP) operated aboard the Russian high altitude research aircraft M-55 Geophysica with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS). Two to four modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionately more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3 and satellite images, clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow from a developing MCS ice crystal number concentrations of up to (8.3 ± 1.6) cm−3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m−3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm−3, an ice water content of 2.3 × 10−4 g m−3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm.
Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm−3 with maximum particle sizes of 130 μm, and the mean ice water content was about 1.4 × 10−4 g m−3. All known in situ measurements of subvisual tropopause cirrus are compared and an exponential fit on the size distributions is established for modelling purposes.
A comparison of aerosol to ice crystal number concentrations, in order to obtain an estimate on how many ice particles may result from activation of the present aerosol, yielded low ratios for the subvisual cirrus cases of roughly one cloud particle per 30 000 aerosol particles, while for the MCS outflow cases this resulted in a high ratio of one cloud particle per 300 aerosol particles.
In-situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS) clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP) operated aboard the Russian high altitude research aircraft M-55 ''Geophysica'' with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS). Two or three modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionate more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3, and satellite images clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow (developing MCS) ice crystal number concentrations of up to 8.3 cm−3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m−3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm−3, an ice water content of 2.3 × 10−4 g m−3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm.
Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm−3 with maximum particle sizes of 130 μm, and the mean ice water content was about 1.4 × 10−4 g m−3. All known in-situ measurements of subvisual tropopause cirrus are compared and an exponential fit on the size distributions is established in order to give a parameterisation for modelling.
A comparison of aerosol to ice crystal number concentrations, in order to obtain an estimate on how many ice particles result from activation of the present aerosol, yielded low activation ratios for the subvisual cirrus cases of roughly one cloud particle per 30 000 aerosol particles, while for the MCS outflow cases this resulted in a high ratio of one cloud particle per 300 aerosol particles.
We present simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the Arctic winter 2002/2003. We integrated a Lagrangian denitrification scheme into the three-dimensional version of CLaMS that calculates the growth and sedimentation of nitric acid trihydrate (NAT) particles along individual particle trajectories. From those, we derive the HNO3 downward flux resulting from different particle nucleation assumptions. The simulation results show a clear vertical redistribution of total inorganic nitrogen (NOy), with a maximum vortex average permanent NOy removal of over 5 ppb in late December between 500 and 550 K and a corresponding increase of NOy of over 2 ppb below about 450 K. The simulated vertical redistribution of NOy is compared with balloon observations by MkIV and in-situ observations from the high altitude aircraft Geophysica. Assuming a globally uniform NAT particle nucleation rate of 3.4·10−6 cm−3 h−1 in the model, the observed denitrification is well reproduced. In the investigated winter 2002/2003, the denitrification has only moderate impact (<=10%) on the simulated vortex average ozone loss of about 1.1 ppm near the 460 K level. At higher altitudes, above 600 K potential temperature, the simulations show significant ozone depletion through NOx-catalytic cycles due to the unusual early exposure of vortex air to sunlight.
We present simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the Arctic winter 2002/2003. We integrated a Lagrangian denitrification scheme into the three-dimensional version of CLaMS that calculates the growth and sedimentation of nitric acid trihydrate (NAT) particles along individual particle trajectories. From those, we derive the HNO3 downward flux resulting from different particle nucleation assumptions. The simulation results show a clear vertical redistribution of total inorganic nitrogen ( ), with a maximum vortex average permanent removal of over 5ppb in late December between 500 and 550K and a corresponding increase of of over 2ppb below about 450K. The simulated vertical redistribution of is compared with balloon observations by MkIV and in-situ observations from the high altitude aircraft Geophysica. Assuming a globally uniform NAT particle nucleation rate of 7.8x10-6cm-3h-1 in the model, the observed denitrification is well reproduced.
In the investigated winter 2002/2003, the denitrification has only moderate impact (≤14%) on the simulated vortex average ozone loss of about 1.1ppm near the 460K level. At higher altitudes, above 600K potential temperature, the simulations show significant ozone depletion through -catalytic cycles due to the unusual early exposure of vortex air to sunlight.
Background: Pediatric community acquired pneumonia (pedCAP) is one of the leading causes for childhood morbidity accounting for up to 20% of pediatric hospital admissions in high income countries. In spite of its high morbidity, updated epidemiological and pathogen data after introduction of preventive vaccination and novel pathogen screening strategies are limited. Moreover, there is a need for validated recommendations on diagnostic and treatment regimens in pedCAP. Through collection of patient data and analysis of pathogen and host factors in a large sample of unselected pedCAP patients in Germany, we aim to address and substantially improve this situation.
Methods: pedCAPNETZ is an observational, multi-center study on pedCAP. Thus far, nine study centers in hospitals, outpatient clinics and practices have been initiated and more than 400 patients with radiologically confirmed pneumonia have been enrolled, aiming at a total of 1000 study participants. Employing an online data base, information on disease course, treatment as well as demographical and socioeconomical data is recorded. Patients are followed up until day 90 after enrollment; Comprehensive biosample collection and a central pedCAPNETZ biobank allow for in-depth analyses of pathogen and host factors. Standardized workflows to assure sample logistics and data management in more than fifteen future study centers have been established.
Discussion: Through comprehensive epidemiological, clinical and biological analyses, pedCAPNETZ fills an important gap in pediatric and infection research. To secure dissemination of the registry, we will raise clinical and scientific awareness at all levels. We aim at participating in decision making processes for guidelines and prevention strategies. Ultimately, we hope the results of the pedCAPNETZ registry will help to improve care and quality of life in pedCAP patients in the future.
Introduction: Older patients with multimorbidity, polypharmacy and related complex care needs represent a growing proportion of the population and a challenge for healthcare systems. Particularly in transitional care (hospital admission and hospital discharge), medical errors, inappropriate treatment, patient concerns and lack of confidence in healthcare are major problems that may arise from a lack of information continuity. The aim of this study is to develop an intervention to improve informational continuity of care at the interface between general practice and hospital care.
Methods and analysis: A qualitative approach will be used to develop our participatory intervention. Overall, 32 semistructured interviews with relevant stakeholders will be conducted and analysed. The stakeholders will include healthcare professionals from the outpatient setting (general practitioners, healthcare assistants, ambulatory care nurses) and the inpatient setting (clinical doctors, nurses, pharmacists, clinical information scientists) as well as patients and informal caregivers. At a series of workshops based on the results of the stakeholder analyses, we aim to develop a participatory intervention that will then be implemented in a subsequent pilot study. The same stakeholder groups will be invited for participation in the workshops.
Ethics and dissemination: Ethical approval for this study was waived by the Ethics Committee of Goethe University Frankfurt because of the nature of the proposed study. Written informed consent will be obtained from all study participants prior to participation. Results will be tested in a pilot study and disseminated at (inter)national conferences and via publication in peer-reviewed journals.
During winter 2015/2016, the Arctic stratosphere was characterized by extraordinarily low temperatures in connection with a very strong polar vortex and with the occurrence of extensive polar stratospheric clouds. From mid-December 2015 until mid-March 2016, the German research aircraft HALO (High Altitude and Long-Range Research Aircraft) was deployed to probe the lowermost stratosphere in the Arctic region within the POLSTRACC (Polar Stratosphere in a Changing Climate) mission. More than 20 flights have been conducted out of Kiruna, Sweden, and Oberpfaffenhofen, Germany, covering the whole winter period. Besides total reactive nitrogen (NOy), observations of nitrous oxide, nitric acid, ozone, and water were used for this study. Total reactive nitrogen and its partitioning between the gas and particle phases are key parameters for understanding processes controlling the ozone budget in the polar winter stratosphere. The vertical redistribution of total reactive nitrogen was evaluated by using tracer–tracer correlations (NOy–N2O and NOy–O3). The trace gases are well correlated as long as the NOy distribution is controlled by its gas-phase production from N2O. Deviations of the observed NOy from this correlation indicate the influence of heterogeneous processes. In early winter no such deviations have been observed. In January, however, air masses with extensive nitrification were encountered at altitudes between 12 and 15 km. The excess NOy amounted to about 6 ppb. During several flights, along with gas-phase nitrification, indications for extensive occurrence of nitric acid containing particles at flight altitude were found. These observations support the assumption of sedimentation and subsequent evaporation of nitric acid-containing particles, leading to redistribution of total reactive nitrogen at lower altitudes. Remnants of nitrified air masses have been observed until mid-March. Between the end of February and mid-March, denitrified air masses have also been observed in connection with high potential temperatures. This indicates the downward transport of air masses that have been denitrified during the earlier winter phase. Using tracer–tracer correlations, missing total reactive nitrogen was estimated to amount to 6 ppb. Further, indications of transport and mixing of these processed air masses outside the vortex have been found, contributing to the chemical budget of the winter lowermost stratosphere. Observations within POLSTRACC, at the bottom of the vortex, reflect heterogeneous processes from the overlying Arctic winter stratosphere. The comparison of the observations with CLaMS model simulations confirm and complete the picture arising from the present measurements. The simulations confirm that the ensemble of all observations is representative of the vortex-wide vertical NOy redistribution.
his study aims at a detailed characterization of an ultra-fine aerosol particle counting system for operation on board the Russian high altitude research aircraft M-55 "Geophysica" (maximum ceiling of 21 km). The COndensation PArticle counting Systems (COPAS) consists of an aerosol inlet and two dual-channel continuous flow Condensation Particle Counters (CPCs).
The aerosol inlet, adapted for COPAS measurements on board the M-55 "Geophysica", is described concerning aspiration, transmission, and transport losses. The counting efficiencies of the CPCs using the chlorofluorocarbon FC-43 as the working fluid are studied experimentally at two pressure conditions, 300 hPa and 70 hPa. Three COPAS channels are operated with different temperature differences between the saturator and the condenser block yielding smallest detectable particle sizes (dp50 – as 50% detection "cut off" diameters) of 6 nm, 11 nm, and 15 nm, respectively, at ambient pressure of 70 hPa. The fourth COPAS channel is operated with an aerosol heating line (250°C) for a determination of the non-volatile number of particles. The heating line is experimentally proven to volatilize pure H2SO4-H2O particles for a particle diameter (dp) range of 11 nm<dp<200 nm.
Additionally this study includes investigation to exclude auto-nucleation of the working fluid inside the CPCs. An instrumental inter-comparison (cross-correlation) has been performed for several measurement flights and mission flights in the Arctic and the Tropics are discussed. Finally, COPAS measurements are used for an aircraft plume crossing analysis.
A characterization of the ultra-fine aerosol particle counter COPAS (COndensation PArticle counting System) for operation on board the Russian high altitude research aircraft M-55 Geophysika is presented. The COPAS instrument consists of an aerosol inlet and two dual-channel continuous flow Condensation Particle Counters (CPCs) operated with the chlorofluorocarbon FC-43. It operates at pressures between 400 and 50 hPa for aerosol detection in the particle diameter (dp) range from 6 nm up to 1 micro m. The aerosol inlet, designed for the M-55, is characterized with respect to aspiration, transmission, and transport losses. The experimental characterization of counting efficiencies of three CPCs yields dp50 (50% detection particle diameter) of 6 nm, 11 nm, and 15 nm at temperature differences (DeltaT) between saturator and condenser of 17°C, 30°C, and 33°C, respectively. Non-volatile particles are quantified with a fourth CPC, with dp50=11 nm. It includes an aerosol heating line (250°C) to evaporate H2SO4-H2O particles of 11 nm<dp<200 nm at pressures between 70 and 300 hPa. An instrumental in-flight inter-comparison of the different COPAS CPCs yields correlation coefficients of 0.996 and 0.985. The particle emission index for the M-55 in the range of 1.4–8.4×10 16 kg -1 fuel burned has been estimated based on measurements of the Geophysika's own exhaust.
Background: In the COVID-19 pandemic, numerous researchers postponed their patient and public involvement (PPI) activities. This was mainly due to assumptions on patients’ willingness and skills to participate digitally. In fact, digital PPI workshops differ from in-person meetings as some forms of non-verbal cues and body language may be missing and technical barriers may exist. Within our project HYPERION-TransCare we adapted our PPI workshop series for intervention development to a digital format and assessed whether these digital workshops were feasible for patients, health care professionals and researchers.
Methods: We used a digital meeting tool that included communication via audio, video and chat. Discussions were documented simultaneously on a digital white board. Technical support was provided via phone and chat during the workshops and with a technical introduction workshop in advance. The workshop evaluation encompassed observation protocols, participants’ feedback via chat after each workshop on their chance to speak and the usability of the digital tools, and telephone interviews on patients’ and health professionals’ experiences after the end of the workshop series.
Results: Observation protocols showed an active role of moderators in verbally encouraging every participant to get involved. Technical challenges occurred, but were in most cases immediately addressed and solved. Participants median rating of their chance to speak and the usability of the digital tool was “very good”. In the evaluation interviews participants reported a change of perspective and mutual understanding as a main benefit from the PPI workshops and described the atmosphere as inclusive and on equal footing. Benefits of the digital format such as overcoming geographical distance, saving time and combining workshop participation with professional or childcare obligations were reported. Technical support was stressed as a pre-condition for getting actively involved in digital PPI.
Conclusions: Digital formats using different didactic and documentation techniques, accompanied by technical support, can foster active patient and public involvement. The advantages of digital PPI formats such as geographical flexibility and saving time for participants as well as the opportunity to prepare and hold workshops in geographically stretched research teams persists beyond the pandemic and may in some cases outweigh the advantages of in-person communication.