Refine
Document Type
- Article (8)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- glioma (2)
- hypoxia (2)
- ASCT (1)
- Antifungal agents (1)
- Apoptosis (1)
- Aspergillosis (1)
- CHIP (1)
- Cell Metabolism (1)
- Germany (1)
- Glioma (1)
Institute
Background: Community acquired viruses (CRVs) may cause severe disease in cancer patients. Thus, efforts should be made to diagnose CRV rapidly and manage CRV infections accordingly.
Methods: A panel of 18 clinicians from the Infectious Diseases Working Party of the German Society for Haematology and Medical Oncology have convened to assess the available literature and provide recommendations on the management of CRV infections including influenza, respiratory syncytial virus, parainfluenza virus, human metapneumovirus and adenovirus.
Results: CRV infections in cancer patients may lead to pneumonia in approximately 30% of the cases, with an associated mortality of around 25%. For diagnosis of a CRV infection, combined nasal/throat swabs or washes/aspirates give the best results and nucleic acid amplification based-techniques (NAT) should be used to detect the pathogen. Hand hygiene, contact isolation and face masks have been shown to be of benefit as general infection management. Causal treatment can be given for influenza, using a neuraminidase inhibitor, and respiratory syncytial virus, using ribavirin in addition to intravenous immunoglobulins. Ribavirin has also been used to treat parainfluenza virus and human metapneumovirus, but data are inconclusive in this setting. Cidofovir is used to treat adenovirus pneumonitis.
Conclusions: CRV infections may pose a vital threat to patients with underlying malignancy. This guideline provides information on diagnosis and treatment to improve the outcome.
Objectives: It is known that transition, as a shift of care, marks a vulnerable phase in the adolescents’ lives with an increased risk for non-adherence and allograft failure. Still, the transition process of adolescents and young adults living with a kidney transplant in Germany is not well defined. The present research aims to assess transition-relevant structures for this group of young people. Special attention is paid to the timing of the process.
Setting: In an observational study, we visited 21 departments of paediatric nephrology in Germany. Participants were doctors (n=19), nurses (n=14) and psychosocial staff (n=16) who were responsible for transition in the relevant centres. Structural elements were surveyed using a short questionnaire. The experiential viewpoint was collected by interviews which were transcribedverbatim before thematic analysis was performed.
Results: This study highlights that professionals working within paediatric nephrology in Germany are well aware of the importance of successful transition. Key elements of transitional care are well understood and mutually agreed on. Nonetheless, implementation within daily routine seems challenging, and the absence of written, structured procedures may hamper successful transition.
Conclusions: While professionals aim for an individual timing of transfer based on medical, social, emotional and structural aspects, rigid regulations on transfer age as given by the relevant health authorities add on to the challenge.
Trial registration: number ISRCTN Registry no 22988897; results (phase I) and pre-results (phase II).
In several tumor entities, transketolase-like protein 1 (TKTL1) has been suggested to promote the nonoxidative part of the pentose phosphate pathway (PPP) and thereby to contribute to a malignant phenotype. However, its role in glioma biology has only been sparsely documented. In the present in vitro study using LNT-229 glioma cells, we analyzed the impact of TKTL1 gene suppression on basic metabolic parameters and on survival following oxygen restriction and ionizing radiation. TKTL1 was induced by hypoxia and by hypoxia-inducible factor-1α (HIF-1α). Knockdown of TKTL1 via shRNA increased the cells’ demand for glucose, decreased flux through the PPP and promoted cell death under hypoxic conditions. Following irradiation, suppression of TKTL1 expression resulted in elevated levels of reactive oxygen species (ROS) and reduced clonogenic survival. In summary, our results indicate a role of TKTL1 in the adaptation of tumor cells to oxygen deprivation and in the acquisition of radioresistance. Further studies are necessary to examine whether strategies that antagonize TKTL1 function will be able to restore the sensitivity of glioma cells towards irradiation and antiangiogenic therapies in the more complex in vivo environment.
The TP53-induced glycolysis and apoptosis regulator (TIGAR) has been shown to decrease glycolysis, to activate the pentose phosphate pathway, and to provide protection against oxidative damage. Hypoxic regions are considered characteristic of glioblastoma and linked with resistance to current treatment strategies. Here, we established that LNT-229 glioma cell lines stably expressed shRNA constructs targeting TIGAR, and exposed them to hypoxia, irradiation and temozolomide. The disruption of TIGAR enhanced levels of reactive oxygen species and cell death under hypoxic conditions, as well as the effectiveness of irradiation and temozolomide. In addition, TIGAR was upregulated by HIF-1α. As a component of a complex network, TIGAR contributes to the metabolic adjustments that arise from either spontaneous or therapy-induced changes in tumor microenvironment.
Treatment of chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute leukemia (Ph+ ALL) has been revolutionized with the advent of tyrosine kinase inhibitors (TKIs). Most patients with CML achieve long-term survival similar to individuals without CML due to treatment with TKIs not only in frontline but also in further lines of therapy. The third-generation TKI ponatinib has demonstrated efficacy in patients with refractory CML and Ph+ ALL. Ponatinib is currently the most potent TKI in this setting demonstrating activity against T315I mutant clones. However, ponatinib’s safety data revealed a dose-dependent, increased risk of serious cardiovascular (CV) events. Guidance is needed to evaluate the benefit–risk profile of TKIs, such as ponatinib, and safety measures to prevent treatment-associated CV events. An expert panel of German hematologists and cardiologists summarize current evidence regarding ponatinib’s efficacy and CV safety profile. We propose CV management strategies for patients who are candidates for ponatinib.
Clonal hematopoiesis of indeterminate potential (CHIP) is caused by recurrent somatic mutations leading to clonal blood cell expansion. However, direct evidence of the fitness of CHIP-mutated human hematopoietic stem cells (HSCs) in blood reconstitution is lacking. Because myeloablative treatment and transplantation enforce stress on HSCs, we followed 81 patients with solid tumors or lymphoid diseases undergoing autologous stem cell transplantation (ASCT) for the development of CHIP. We found a high incidence of CHIP (22%) after ASCT with a high mean variant allele frequency (VAF) of 10.7%. Most mutations were already present in the graft, albeit at lower VAFs, demonstrating a selective reconstitution advantage of mutated HSCs after ASCT. However, patients with CHIP mutations in DNA-damage response genes showed delayed neutrophil reconstitution. Thus, CHIP-mutated stem and progenitor cells largely gain on clone size upon ASCT-related blood reconstitution, leading to an increased future risk of CHIP-associated complications.
The Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO) here presents its updated recommendations for the treatment of documented fungal infections. Invasive fungal infections are a main cause of morbidity and mortality in cancer patients undergoing intensive chemotherapy regimens. In recent years, new antifungal agents have been licensed, and agents already approved have been studied in new indications. The choice of the most appropriate antifungal treatment depends on the fungal species suspected or identified, the patient’s risk factors (e.g., length and depth of neutropenia), and the expected side effects. This guideline reviews the clinical studies that served as a basis for the following recommendations. All recommendations including the levels of evidence are summarized in tables to give the reader rapid access to the information.
Altered metabolism in tumor cells is increasingly recognized as a core component of the neoplastic phenotype. Because p53 has emerged as a master metabolic regulator, we hypothesized that the presence of wild-type p53 in glioblastoma cells could confer a selective advantage to these cells under the adverse conditions of the glioma microenvironment. Here, we report on the effects of the p53-dependent effector Tp53-induced glycolysis and apoptosis regulator (TIGAR) on hypoxia-induced cell death. We demonstrate that TIGAR is overexpressed in glioblastomas and that ectopic expression of TIGAR reduces cell death induced by glucose and oxygen restriction. Metabolic analyses revealed that TIGAR inhibits glycolysis and promotes respiration. Further, generation of reactive oxygen species (ROS) levels was reduced whereas levels of reduced glutathione were elevated in TIGAR-expressing cells. Finally, inhibiting the transketolase isoenzyme transketolase-like 1 (TKTL1) by siRNA reversed theses effects of TIGAR. These findings suggest that glioma cells benefit from TIGAR expression by (i) improving energy yield from glucose via increased respiration and (ii) enhancing defense mechanisms against ROS. Targeting metabolic regulators such as TIGAR may therefore be a valuable strategy to enhance glioma cell sensitivity toward spontaneously occurring or therapy-induced starvation conditions or ROS-inducing therapeutic approaches.