Refine
Document Type
- Article (8)
- Doctoral Thesis (1)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- cryptochrome 1a (2)
- Activated Cry1a (1)
- Cryptochrome 1a (1)
- FAD (1)
- Flavin cycle (1)
- Magnetic compass (1)
- Magnetrezeption (1)
- Photoreduction (1)
- Radical pair mechanisms (1)
- UV/V cones (1)
Institute
Background: The Radical-Pair-Model postulates that the reception of magnetic compass directions in birds is based on spin-chemical reactions in specialized photopigments in the eye, with cryptochromes discussed as candidate molecules. But so far, the exact subcellular characterization of these molecules in the retina remained unknown. Methodology/Principal Findings: We here describe the localization of cryptochrome 1a (Cry1a) in the retina of European robins, Erithacus rubecula, and domestic chickens, Gallus gallus, two species that have been shown to use the magnetic field for compass orientation. In both species, Cry1a is present exclusively in the ultraviolet/violet (UV/V) cones that are distributed across the entire retina. Electron microscopy shows Cry1a in ordered bands along the membrane discs of the outer segment, and cell fractionation reveals Cry1a in the membrane fraction, suggesting the possibility that Cry1a is anchored along membranes. Conclusions/Significance: We provide first structural evidence that Cry1a occurs within a sensory structure arranged in a way that fulfils essential requirements of the Radical-Pair-Model. Our findings, identifying the UV/V-cones as probable magnetoreceptors, support the assumption that Cry1a is indeed the receptor molecule mediating information on magnetic directions, and thus provide the Radical-Pair-Model with a profound histological background.
The Radical Pair Model proposes that the avian magnetic compass is based on spin-chemical processes: since the ratio between the two spin states singlet and triplet of radical pairs depends on their alignment in the magnetic field, it can provide information on magnetic directions. Cryptochromes, blue light-absorbing flavoproteins, with flavin adenine dinucleotide as chromophore, are suggested as molecules forming the radical pairs underlying magnetoreception. When activated by light, cryptochromes undergo a redox cycle, in the course of which radical pairs are generated during photo-reduction as well as during light-independent re-oxidation. This raised the question as to which radical pair is crucial for mediating magnetic directions. Here, we present the results from behavioural experiments with intermittent light and magnetic field pulses that clearly show that magnetoreception is possible in the dark interval, pointing to the radical pair formed during flavin re-oxidation. This differs from the mechanism considered for cryptochrome signalling the presence of light and rules out most current models of an avian magnetic compass based on the radical pair generated during photo-reduction. Using the radical pair formed during re-oxidation may represent a specific adaptation of the avian magnetic compass.
Cryptochromes, blue-light absorbing proteins involved in the circadian clock, have been proposed to be the receptor molecules of the avian magnetic compass. In birds, several cryptochromes occur: Cryptochrome 2, Cryptochrome 4 and two splice products of Cryptochrome 1, Cry1a and Cry1b. With an antibody not distinguishing between the two splice products, Cryptochrome 1 had been detected in the retinal ganglion cells of garden warblers during migration. A recent study located Cry1a in the outer segments of UV/V-cones in the retina of domestic chickens and European robins, another migratory species. Here we report the presence of cryptochrome 1b (eCry1b) in retinal ganglion cells and displaced ganglion cells of European Robins, Erithacus rubecula. Immuno histochemistry at the light microscopic and electron microscopic level showed eCry1b in the cell plasma, free in the cytosol as well as bound to membranes. This is supported by immuno blotting. However, this applies only to robins in the migratory state. After the end of the migratory phase, the amount of eCry1b was markedly reduced and hardly detectable. In robins, the amount of eCry1b in the retinal ganglion cells varies with season: it appears to be strongly expressed only during the migratory period when the birds show nocturnal migratory restlessness. Since the avian magnetic compass does not seem to be restricted to the migratory phase, this seasonal variation makes a role of eCry1b in magnetoreception rather unlikely. Rather, it could be involved in physiological processes controlling migratory restlessness and thus enabling birds to perform their nocturnal flights.
The radical pair model proposes that the avian magnetic compass is based on radical pair processes in the eye, with cryptochrome, a flavoprotein, suggested as receptor molecule. Cryptochrome 1a (Cry1a) is localized at the discs of the outer segments of the UV/violet cones of European robins and chickens. Here, we show the activation characteristics of a bird cryptochrome in vivo under natural conditions. We exposed chickens for 30 min to different light regimes and analysed the amount of Cry1a labelled with an antiserum against an epitope at the C-terminus of this protein. The staining after exposure to sunlight and to darkness indicated that the antiserum labels only an illuminated, activated form of Cry1a. Exposure to narrow-bandwidth lights of various wavelengths revealed activated Cry1a at UV, blue and turquoise light. With green and yellow, the amount of activated Cry1a was reduced, and with red, as in the dark, no activated Cry1a was labelled. Activated Cry1a is thus found at all those wavelengths at which birds can orient using their magnetic inclination compass, supporting the role of Cry1a as receptor molecule. The observation that activated Cry1a and well-oriented behaviour occur at 565 nm green light, a wavelength not absorbed by the fully oxidized form of cryptochrome, suggests that a state other than the previously suggested Trp/FAD radical pair formed during photoreduction is crucial for detecting magnetic directions.
The geomagnetic field provides directional information for birds. The avian magnetic compass is an inclination compass that uses not the polarity of the magnetic field but the axial course of the field lines and their inclination in space. It works in a flexible functional window, and it requires short-wavelength light. These characteristics result from the underlying sensory mechanism based on radical pair processes in the eyes, with cryptochrome suggested as the receptor molecule. The chromophore of cryptochrome, flavin adenine dinucleotide (FAD), undergoes a photocycle, where radical pairs are formed during photo-reduction as well as during re-oxidation; behavioral data indicate that the latter is crucial for detecting magnetic directions. Five types of cryptochromes are found in the retina of birds: cryptochrome 1a (Cry1a), cryptochrome 1b, cryptochrome 2, cryptochrome 4a, and cryptochrome 4b. Because of its location in the outer segments of the ultraviolet cones with their clear oil droplets, Cry1a appears to be the most likely receptor molecule for magnetic compass information.
Cryptochrome 1a, located in the UV/violet-sensitive cones in the avian retina, is discussed as receptor molecule for the magnetic compass of birds. Our previous immunohistochemical studies of chicken retinae with an antiserum that labelled only activated cryptochrome 1a had shown activation of cryptochrome 1a under 373 nm UV, 424 nm blue, 502 nm turquoise and 565 nm green light. Green light, however, does not allow the first step of photoreduction of oxidized cryptochromes to the semiquinone. As the chickens had been kept under ‘white’ light before, we suggested that there was a supply of the semiquinone present at the beginning of the exposure to green light, which could be further reduced and then re-oxidized. To test this hypothesis, we exposed chickens to various wavelengths (1) for 30 min after being kept in daylight, (2) for 30 min after a 30 min pre-exposure to total darkness, and (3) for 1 h after being kept in daylight. In the first case, we found activated cryptochrome 1a under UV, blue, turquoise and green light; in the second two cases we found activated cryptochrome 1a only under UV to turquoise light, where the complete redox cycle of cryptochrome can run, but not under green light. This observation is in agreement with the hypothesis that activated cryptochrome 1a is found as long as there is some of the semiquinone left, but not when the supply is depleted. It supports the idea that the crucial radical pair for magnetoreception is generated during re-oxidation.
Cryptochromes are a ubiquitous group of blue-light absorbing flavoproteins that in the mammalian retina have an important role in the circadian clock. In birds, cryptochrome 1a (Cry1a), localized in the UV/violet-sensitive S1 cone photoreceptors, is proposed to be the retinal receptor molecule of the light-dependent magnetic compass. The retinal localization of mammalian Cry1, homologue to avian Cry1a, is unknown and it is open whether mammalian Cry1 is also involved in magnetic field sensing. To constrain the possible role of retinal Cry1, we immunohistochemically analysed 90 mammalian species across 48 families in 16 orders, using an antiserum against the Cry1 C-terminus that in birds labels only the photo-activated conformation. In the Carnivora families Canidae, Mustelidae and Ursidae and in some Primates, Cry1 was consistently labeled in the outer segment of the shortwave-sensitive S1 cones. This finding would be compatible with a magnetoreceptive function of Cry1 in these taxa. In all other taxa, Cry1 was not detected by the antiserum that likely also in mammals labels the photo-activated conformation, although Western blots showed Cry1 in mouse retinal cell nuclei. We speculate that in the mouse and the other negative-tested mammals Cry1 is involved in circadian functions as a non-light-responsive protein.
Correction to: Scientific Reports https://doi.org/10.1038/srep21848, published online 22 February 2016
This Article contains an error. Among the studied species, the orangutan was erroneously specified as Bornean orangutan Pongo pygmaeus. In fact, the studied individual was a Sumatran orangutan Pongo abelii.
Es gibt für die Orientierung von Vögel ein allgemeingültiges Konzept, das Karte-Kompass-Prinzip (Kramer 1953, 1957): Der Karten-Schritt besteht darin, den eigenen Standort zu ermitteln und mit dem Ziel in Beziehung zu setzten. Damit wird die geografische Richtung bestimmt, die im Kompass-Schritt in eine konkrete Richtung umgesetzt wird. Für Beides nutzen Vögel auch das Magnetfeld der Erde; in der Karte als einen Faktor den Verlauf der Intensität, im Magnetkompass die Achse der Feldlinien. Der Magnetrezeptor, der die Karte mit Informationen versorgt, ist im Schnabel lokalisiert, der des Kompasses im Auge. Ich habe mich in meiner Arbeit darauf konzentriert, die zwei potenziellen Magnetrezeptoren der Vögel feinstrukturell und immunhistologisch weiter zu charakterisieren.
Für den Magnetkompass wird auf Grund des Radikalpaar-Modells angenommen, dass Cryptochrome die Rezeptormoleküle sein könnten (Ritz et al. 2000). Bei Vögeln sind vier Cryptochrome bekannt, allerdings muss das Rezeptormolekül des Magnetkompasses auch in seiner Lokalisation bestimmte Kriterien erfüllen. Die für meine Arbeit bedeutsamen Kriterien sind: (1) die gleiche Ausrichtung der Proteine in einer Rezeptorzelle und (2), dass die einzelnen Rezeptorzellen alle Raumrichtungen abdecken. Ich habe in meiner Arbeit Cryptochrom 1a (Cry1a) und Cryptochrom 1b (Cry1b) auf ihr Vorkommen in der Retina von Rotkehlchen (Erithacus rubecula) und Hühnern (Gallus gallus) untersucht. Cry1b befindet sich bei Rotkehlchen während der Zugzeit in den Ganglienzellen, in denen es teilweise an Membranen gebunden vorliegt, die jedoch keine bevorzugte Richtung haben. Somit erscheint mir Cry1b als Rezeptormolekül für den Magnetkompass als eher ungeeignet. Cry1b könnte, wie viele Cryptochrome, an der Steuerung von circadianen Rhythmen beteiligt sein. Cry1a hingegen ist bei beiden untersuchten Vogelarten in den UV/V-Zapfen an die Diskmembranen gebunden, was eine Ausrichtung ermöglicht. Die UV/V-Zapfen sind über die gesamte Retina gleichmäßig verteilt, und durch die sphärische Form des Auges decken die einzelnen Rezeptoren jede Raumrichtung ab. Somit erfüllt Cry1a die Bedingungen des Radikalpaar-Modells, und ich schließe daraus, dass es sich hierbei um das Rezeptormolekül des Magnetkompasses handeln könnte. Cry1a ändert nach Lichtabsorption wie viele Cryptochrome seine Konformation. Der von mir verwendete Antikörper bindet nur die lichtaktivierte Form des Proteins. In Versuchen, in denen Hühner verschiedenen monochromatischen Lichtern ausgesetzt wurden, zeigt sich, dass sich Cry1a in UV bis Gelb in lichtaktiviertem Zustand befindet. Dies stimmt sowohl mit der spektralen Empfindlichkeit des Magnetkompasses der Vögel als auch mit der des Flavins, des lichtsensitiven Teils des Cryptochroms, überein. Versuche mit grünem Licht lassen vorsichtige Rückschlüsse auf das für den Magnetkompass relevante Radikalpaar zu: so ist das Flavin erst im zweiten Oxidationsschritt grünlicht-sensitiv, und Cry1a ist nur nachweisbar, also lichtaktiviert, wenn der erste Schritt bereits im Hellen abgelaufen ist. Versuche in denen die Tiere vorab im Dunkeln waren, führen nicht zur erneuten Lichtaktivierung unter grünem Licht. Dies macht nur eines der beiden im Flavinzyklus entstehenden Radikalpaare wahrscheinlich, nämlich das in der Reoxidation entstehende, da das Radikalpaar im ersten Schritt der Oxidation unter Grün nicht entsteht.
In Bezug auf den Magnetrezeptor im Schnabel konnte bereits bei Tauben eine detaillierte Struktur beschrieben werden, die als Magnetrezeptor geeignet ist, nämlich Magnetit- bzw. Maghemit-Teilchen in Dendriten der Nerven (Fleissner et al. 2003). Auch Hühner haben eisenhaltige Strukturen im Oberschnabel, die in ihrer Eisenoxid-Zusammensetzung denen der Tauben entsprechen (Falkenberg et al. 2010). Ich konnte in meiner Arbeit zeigen, dass die eisenhaltigen Strukturen im Oberschnabel der adulten Hühner an oder in Nervenfasern liegen. Elektronenoptisch bestehen diese eisenhaltigen Strukturen im Nervengewebe bei Hühnern, wie bei Tauben beschrieben, aus einem 3-5 µm großen Vesikel, der von eisenhaltigen ‘Schuppen’ besetzt ist, aus circa 1 µm langen Plättchen und Kugeln mit einem Durchmesser von etwa 1 µm. Sie sind in Feldern angeordnet, in denen diese Zellstrukturen gleich ausgerichtet sind. In der Anzahl und Lokalisation der Felder der eisenhaltigen Dendriten gibt es Unterschiede zwischen Hühnern und Tauben, allerdings ist unklar, inwie¬weit dies zu Unterschieden in der Verarbeitung im Gehirn führt. Die Entwicklung der eisenhaltigen Dendriten der Hühner beginnt erst nach dem Schlupf, am Tag des Schlupfes haben Küken noch keine eisenhaltigen Strukturen, abgesehen von roten Blutkörperchen. In den ersten 5 Tagen werden eisenhaltige Makrophagen im frontalen Bereich des Schnabels gebildet, die anschließend wieder reduziert werden. Bei 12 Tage alten Hühnern werden diese auch im lateralen Bereich des Oberschnabels angelegt und ebenfalls dort bis Tag 21 wieder reduziert. 21 Tage alte Hühner haben nur noch wenige eisenhaltige Makrophagen, allerdings ein erstes Feld von eisenhaltigen Dendriten. Die Röntgenabsorption zeigt einen Unterschied in der Eisenoxid-Zusammensetzung zwischen eisenhaltigen Makrophagen und eisenhaltigen Dendriten. Es könnte sein, dass die eisenhaltigen Makrophagen an der Synthese der eisenhaltigen Dendriten beteiligt sind, da sie Eisen aufnehmen, aber auch wieder abgeben können und in demselben Zeitraum reduziert werden, wie die eisenhaltigen Dendriten aufgebaut werden.
Sowohl Tauben als auch Rotkehlchen haben sich phylogenetisch bereits vor 95 Millionen Jahren von den Hühnern abgespalten. Es gibt sowohl in der Lokalisation von Cry1a als auch in der Struktur der einzelnen eisenhaltigen Dendriten keine Unterschiede, so dass es sich bei den beiden Magnetrezeptoren der Vögel vermutlich um sehr alte Mechanismen handelt, die sich in der Evolution kaum verändert haben. Vermutlich sind sie vogelspezifisch, da es in dieser Hinsicht keine erkennbare Gemeinsamkeit mit anderen Wirbeltieren gibt.