Refine
Year of publication
Document Type
- Article (22)
Language
- English (22)
Has Fulltext
- yes (22)
Is part of the Bibliography
- no (22)
Keywords
- breast cancer (6)
- Aurora A (2)
- BCL6 (2)
- Breast cancer (2)
- Primary cilium (2)
- adipose-derived mesenchymal stem cells (2)
- differentiation (2)
- neoadjuvant therapy (2)
- primary cilium (2)
- trophoblast (2)
Institute
- Medizin (22)
Introduction: Current prognostic gene expression profiles for breast cancer mainly reflect proliferation status and are most useful in ER-positive cancers. Triple negative breast cancers (TNBC) are clinically heterogeneous and prognostic markers and biology-based therapies are needed to better treat this disease.
Methods: We assembled Affymetrix gene expression data for 579 TNBC and performed unsupervised analysis to define metagenes that distinguish molecular subsets within TNBC. We used n = 394 cases for discovery and n = 185 cases for validation. Sixteen metagenes emerged that identified basal-like, apocrine and claudin-low molecular subtypes, or reflected various non-neoplastic cell populations, including immune cells, blood, adipocytes, stroma, angiogenesis and inflammation within the cancer. The expressions of these metagenes were correlated with survival and multivariate analysis was performed, including routine clinical and pathological variables.
Results: Seventy-three percent of TNBC displayed basal-like molecular subtype that correlated with high histological grade and younger age. Survival of basal-like TNBC was not different from non basal-like TNBC. High expression of immune cell metagenes was associated with good and high expression of inflammation and angiogenesis-related metagenes were associated with poor prognosis. A ratio of high B-cell and low IL-8 metagenes identified 32% of TNBC with good prognosis (hazard ratio (HR) 0.37, 95% CI 0.22 to 0.61; P < 0.001) and was the only significant predictor in multivariate analysis including routine clinicopathological variables.
Conclusions: We describe a ratio of high B-cell presence and low IL-8 activity as a powerful new prognostic marker for TNBC. Inhibition of the IL-8 pathway also represents an attractive novel therapeutic target for this disease.
The proliferative stimulus of the epidermal growth factor (EGF) in human epithelial cells is mediated by its binding to the external domain of the EGF receptor (EGF-R). The purpose of this study was to investigate whether growth arrest of tumors treated with anti-EGFR MAb (EMD 55900) was dependent on EGF-R expression and distinct histopathologic criteria of those neoplasms. Nine different adenocarcinomas, squamous cell carcinomas and two neoplastic epithelial cell lines (A431 and Detroit 562), which were characterized by high EGF-R expression, were xenotransplanted onto NMRI-nu/nu mice and treated with an anti-EGF-R antibody (EMD 55900). Results revealed that EGF-R expression and distinct histopathologic growth patterns play an important role for the therapeutic effect of the EGF-R antibody treatment. Tumors with high epithelial cellularity and little connective tissue responded to EMD 55900 treatment to a greater degree of growth reduction than tumors with lower cellularity. These results will be helpful for evaluation of patients who would benefit from tumor therapy with anti-EGF-R antibody.
Background: Remodeling of extracellular matrix through collagen degradation is a crucial step in the metastatic cascade. The aim of this study was to evaluate the potential clinical relevance of the serum collagen degradation markers (CDM) C3M and C4M during neoadjuvant chemotherapy for breast cancer.
Methods: Patients from the GeparQuinto phase 3 trial with untreated HER2-positive operable or locally advanced breast cancer were enrolled between 7 November 2007, and 9 July 2010, and randomly assigned to receive neoadjuvant treatment with EC/docetaxel with either trastuzumab or lapatinib. Blood samples were collected at baseline, after four cycles of chemotherapy and at surgery. Cutoff values were determined using validated cutoff finder software (C3M: Low ≤9.00 ng/mL, high >9.00 ng/mL, C4M: Low ≤40.91 ng/mL, high >40.91 ng/mL).
Results: 157 patients were included in this analysis. At baseline, 11.7% and 14.8% of patients had high C3M and C4M serum levels, respectively. No correlation was observed between CDM and classical clinical-pathological factors. Patients with high levels of CDM were significantly more likely to achieve a pathological complete response (pCR, defined as ypT0 ypN0) than patients with low levels (C3M: 66.7% vs. 25.7%, p = 0.002; C4M: 52.7% vs. 26.6%, p = 0.031). Median levels of both markers were lower at the time of surgery than at baseline. In the multivariate analysis including clinical-pathological factors and C3M levels at baseline and changes in C3M levels between baseline and after four cycles of therapy, only C3M levels at baseline (p = 0.035, OR 4.469, 95%-CI 1.115–17.919) independently predicted pCR. In a similar model including clinical-pathological factors and C4M, only C4M levels at baseline (p = 0.028, OR 6.203, 95%-CI 1.220–31.546) and tumor size (p = 0.035, OR 4.900, 95%-CI 1.122–21.393) were independent predictors of pCR. High C3M levels at baseline did not correlate with survival in the entire cohort but were associated with worse disease-free survival (DFS; p = 0.029, 5-year DFS 40.0% vs. 74.9%) and overall survival (OS; p = 0.020, 5-year OS 60.0% vs. 88.3%) in the subgroup of patients randomized to lapatinib. In the trastuzumab arm, C3M did not correlate with survival. In the entire patient cohort, high levels of C4M at baseline were significantly associated with shorter DFS (p = 0.001, 5-year DFS 53.1% vs. 81.6%) but not with OS. When treatment arms were considered separately, the association with DFS was still significant (p = 0.014, 5-year DFS 44.4% vs. 77.0% in the lapatinib arm; p = 0.023, 5-year DFS 62.5% vs. 86.2% in the trastuzumab arm).
Conclusions: Collagen degradation markers are associated with response to neoadjuvant therapy and seem to play a role in breast cancer.
Objective: Many cancer patients complain about cognitive dysfunction. While cognitive deficits have been attributed to the side effects of chemotherapy, there is evidence for impairment at disease onset, prior to cancer-directed therapy. Further debated issues concern the relationship between self-reported complaints and objective test performance and the role of psychological distress.
Method: We assessed performance on neuropsychological tests of attention and memory and obtained estimates of subjective distress and quality of life in 27 breast cancer patients and 20 healthy controls. Testing in patients took place shortly after the initial diagnosis, but prior to subsequent therapy.
Results: While patients showed elevated distress, cognitive performance differed on a few subtests only. Patients showed slower processing speed and poorer verbal memory than controls. Objective and self-reported cognitive function were unrelated, and psychological distress correlated more strongly with subjective complaints than with neuropsychological test performance.
Conclusion: This study provides further evidence of limited cognitive deficits in cancer patients prior to the onset of adjuvant therapy. Self-reported cognitive deficits seem more closely related to psychological distress than to objective test performance.
Background: The German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) has established a multigene panel (TruRisk®) for the analysis of risk genes for familial breast and ovarian cancer. Summary: An interdisciplinary team of experts from the GC-HBOC has evaluated the available data on risk modification in the presence of pathogenic mutations in these genes based on a structured literature search and through a formal consensus process. Key Messages: The goal of this work is to better assess individual disease risk and, on this basis, to derive clinical recommendations for patient counseling and care at the centers of the GC-HBOC from the initial consultation prior to genetic testing to the use of individual risk-adapted preventive/therapeutic measures.
Background: The incidence of central nervous system (CNS) metastases in breast cancer patients is rising and has become a major clinical challenge. Only few data are published concerning risk factors for the development of CNS metastases as a first site of metastatic disease in breast cancer patients. Moreover, the incidence of CNS metastases after modern neoadjuvant treatment is not clear.
Methods: We analyzed clinical factors associated with the occurrence of CNS metastases as the first site of metastatic disease in breast cancer patients after neoadjuvant treatment in the trials GeparQuinto and GeparSixto (n = 3160) where patients received targeted treatment in addition to taxane and anthracycline-based chemotherapy.
Results: After a median follow-up of 61 months, 108 (3%) of a total of 3160 patients developed CNS metastases as the first site of recurrence and 411 (13%) patients had metastatic disease outside the CNS. Thirty-six patients (1%) developed both CNS metastases and other distant metastases as the first site of metastatic disease. Regarding subtypes of the primary tumor, 1% of luminal A-like (11/954), 2% of luminal B-like (7/381), 4% of HER2-positive (34/809), and 6% of triple-negative patients (56/1008) developed CNS metastases as the first site of metastatic disease.
In multivariate analysis, risk factors for the development of CNS metastases were larger tumor size (cT3–4; HR 1.63, 95% CI 1.08–2.46, p = 0.021), node-positive disease (HR 2.57, 95% CI 1.64–4.04, p < 0.001), no pCR after neoadjuvant chemotherapy (HR 2.29, 95% CI 1.32–3.97, p = 0.003), and HER2-positive (HR 3.80, 95% CI 1.89–7.64, p < 0.001) or triple-negative subtype (HR 6.38, 95% CI 3.28–12.44, p < 0.001).
Conclusions: Especially patients with HER2-positive and triple-negative tumors are at risk of developing CNS metastases despite effective systemic treatment. A better understanding of the underlying mechanisms is required in order to develop potential preventive strategies.
Introduction: Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial.
Methods: HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in-situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro.
Results: Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, p<0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, p<0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (p=0.004), but not in HER2-positive/ESR1-negative tumors.
Conclusions: Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group.
Background: Current prognostic gene signatures for breast cancer mainly reflect proliferation status and have limited value in triple-negative (TNBC) cancers. The identification of prognostic signatures from TNBC cohorts was limited in the past due to small sample sizes.
Methodology/Principal Findings: We assembled all currently publically available TNBC gene expression datasets generated on Affymetrix gene chips. Inter-laboratory variation was minimized by filtering methods for both samples and genes. Supervised analysis was performed to identify prognostic signatures from 394 cases which were subsequently tested on an independent validation cohort (n = 261 cases).
Conclusions/Significance: Using two distinct false discovery rate thresholds, 25% and <3.5%, a larger (n = 264 probesets) and a smaller (n = 26 probesets) prognostic gene sets were identified and used as prognostic predictors. Most of these genes were positively associated with poor prognosis and correlated to metagenes for inflammation and angiogenesis. No correlation to other previously published prognostic signatures (recurrence score, genomic grade index, 70-gene signature, wound response signature, 7-gene immune response module, stroma derived prognostic predictor, and a medullary like signature) was observed. In multivariate analyses in the validation cohort the two signatures showed hazard ratios of 4.03 (95% confidence interval [CI] 1.71–9.48; P = 0.001) and 4.08 (95% CI 1.79–9.28; P = 0.001), respectively. The 10-year event-free survival was 70% for the good risk and 20% for the high risk group. The 26-gene signatures had modest predictive value (AUC = 0.588) to predict response to neoadjuvant chemotherapy, however, the combination of a B-cell metagene with the prognostic signatures increased its response predictive value. We identified a 264-gene prognostic signature for TNBC which is unrelated to previously known prognostic signatures.
Background: The development of the human placenta is tightly coordinated by a multitude of placental cell types, including human chorionic villi mesenchymal stromal cells (hCV-MSCs). Defective hCV-MSCs have been reported in preeclampsia (PE), a gestational hypertensive disease characterized by maternal endothelial dysfunction and systemic inflammation. Our goal was to determine whether hCV-MSCs are ciliated and whether altered ciliation is responsible for defective hCV-MSCs in preeclamptic placentas, as the primary cilium is a hub for signal transduction, which is important for various cellular activities.
Methods: In the present work, we collected placental tissues from different gestational stages and we isolated hCV-MSCs from 1st trimester, term control, and preeclamptic placentas. We studied their ciliation, functionality, and impact on trophoblastic cell lines and organoids formed from human trophoblast stem cells (hTSCs) and from the trophoblastic cell line JEG-3 with various cellular and molecular methods, including immunofluorescence staining, gene analysis, spheroid/organoid formation, motility, and cellular network formation assay. The statistical evaluation was performed using a Student’s t test (two-tailed and paired or homoscedastic) or an unpaired Mann–Whitney U test (two-tailed).
Results: The results show that primary cilia appeared abundantly in normal hCV-MSCs, especially in the early development of the placenta. Compared to control hCV-MSCs, the primary cilia were truncated, and there were fewer ciliated hCV-MSCs derived from preeclamptic placentas with impaired hedgehog signaling. Primary cilia are necessary for hCV-MSCs’ proper signal transduction, motility, homing, and differentiation, which are impaired in preeclamptic hCV-MSCs. Moreover, hCV-MSCs derived from preeclamptic placentas are significantly less capable of promoting growth and differentiation of placental organoids, as well as cellular network formation.
Conclusions: These data suggest that the primary cilium is required for the functionality of hCV-MSCs and primary cilia are impaired in hCV-MSCs from preeclamptic placentas.
Background: Breast cancer is the leading cause of cancer-related deaths in women, demanding new treatment options. With the advent of immune checkpoint blockade, immunotherapy emerged as a treatment option. In addition to lymphocytes, tumor-associated macrophages exert a significant, albeit controversial, impact on tumor development. Pro-inflammatory macrophages are thought to hinder, whereas anti-inflammatory macrophages promote tumor growth. However, molecular markers to identify prognostic macrophage populations remain elusive. Methods: We isolated two macrophage subsets, from 48 primary human breast tumors, distinguished by the expression of CD206. Their transcriptomes were analyzed via RNA-Seq, and potential prognostic macrophage markers were validated by PhenOptics in tissue microarrays of patients with invasive breast cancer. Results: Normal human breast tissue contained mainly CD206+ macrophages, while increased relative amounts of CD206− macrophages were observed in tumors. The presence of CD206+ macrophages correlated with a pronounced lymphocyte infiltrate and subsets of CD206+ macrophages, expressing SERPINH1 and collagen 1, or MORC4, were unexpectedly associated with improved survival of breast cancer patients. In contrast, MHCIIhi CD206− macrophages were linked with a poor survival prognosis. Conclusion: Our data highlight the heterogeneity of tumor-infiltrating macrophages and suggest the use of multiple phenotypic markers to predict the impact of macrophage subpopulations on cancer prognosis. We identified novel macrophage markers that correlate with the survival of patients with invasive mammary carcinoma.