Refine
Year of publication
Document Type
- Article (51)
- Habilitation (1)
Has Fulltext
- yes (52)
Is part of the Bibliography
- no (52)
Keywords
- Atmospheric chemistry (4)
- Atmospheric science (2)
- Climate change (2)
- Biogeochemistry (1)
- CLOUD experiment (1)
- Chemical composition (1)
- Climate-change impacts (1)
- Demolition emissions (1)
- PM10 (1)
- Size distribution (1)
Institute
Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid–amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid–dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth
(2012)
Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to formation and to the early growth of nucleated particles, respectively. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene) showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two Chemical Ionization Mass Spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.
New analysis methods were applied to the data collected with a Condensation Particle Counter battery and a Scanning Mobility Particle Sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ), defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is dominated by organic compounds already at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particles growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. The size resolved growth analysis finally indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.
Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth
(2012)
Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene) showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.
New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ), defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.
The performance of an ion source based on corona discharge has been studied. This source is used for the detection of gaseous sulfuric acid by chemical ionization mass spectrometry (CIMS) through the reaction of NO3– ions with H2SO4. The ion source is operated under atmospheric pressure and its design is similar to the one of a radioactive (Americium 241) ion source which has been used previously. Our results show that the detection limit for the corona ion source is sufficiently good for most applications. For an integration time of one minute it is ~6 × 104 molecules of H2SO4 per cm3. In addition, only a small cross-sensitivity to SO2 has been observed for concentrations as high as 1 ppmv in the sample gas. This low sensitivity to SO2 is achieved even without the addition of an OH scavenger. When comparing the new corona ion source with the americium ion source for the same provided H2SO4 concentration, both ion sources yield almost identical values. These features make the corona ion source investigated here favorable over the more commonly used radioactive ion sources for most applications where H2SO4 is measured by CIMS.
A new method for size-resolved chemical analysis of nucleation mode aerosol particles (size range from ∼10 to ∼30 nm) is presented. The Thermal Desorption Differential Mobility Analyzer (TD-DMA) uses an online, discontinuous principle. The particles are charged, a specific size is selected by differential mobility analysis and they are collected on a filament by electrostatic precipitation. Subsequently, the sampled mass is evaporated in a clean carrier gas and analyzed by a chemical ionization mass spectrometer. Gas-phase measurements are performed with the same mass spectrometer during the sampling of particles. The characterization shows reproducible results, with a particle size resolution of 1.19 and the transmission efficiency for 15 nm particles being slightly above 50 %. The signal from the evaporation of a test substance can be detected starting from 0.01 ng and shows a linear response in the mass spectrometer. Instrument operation in the range of pg m−3 is demonstrated by an example measurement of 15 nm particles produced by nucleation from dimethylamine, sulfuric acid and water.
A recent CLOUD (Cosmics Leaving OUtdoor Droplets) chamber study showed that sulfuric acid and dimethylamine produce new aerosols very efficiently, and yield particle formation rates that are compatible with boundary layer observations. These previously published new particle formation (NPF) rates are re-analyzed in the present study with an advanced method. The results show that the NPF rates at 1.7 nm are more than a factor of 10 faster than previously published due to earlier approximations in correcting particle measurements made at larger detection threshold. The revised NPF rates agree almost perfectly with calculated rates from a kinetic aerosol model at different sizes (1.7 nm and 4.3 nm mobility diameter). In addition, modeled and measured size distributions show good agreement over a wide range (up to ca. 30 nm). Furthermore, the aerosol model is modified such that evaporation rates for some clusters can be taken into account; these evaporation rates were previously published from a flow tube study. Using this model, the findings from the present study and the flow tube experiment can be brought into good agreement. This confirms that nucleation proceeds at rates that are compatible with collision-controlled (a.k.a. kinetically-controlled) new particle formation for the conditions during the CLOUD7 experiment (278 K, 38% RH, sulfuric acid concentration between 1×106 and 3×107 cm-3 and dimethylamine mixing ratio of ~40 pptv). Finally, the simulation of atmospheric new particle formation reveals that even tiny mixing ratios of dimethylamine (0.1 pptv) yield NPF rates that could explain significant boundary layer particle formation. This highlights the need for improved speciation and quantification techniques for atmospheric gas-phase amine measurements.
A new method for size resolved chemical analysis of nucleation mode aerosol particles (size range from ~10 to ~30 nm) is presented. The Thermal Desorption Differential Mobility Analyzer (TD-DMA) uses an online, discontinuous principle. The particles are charged, a specific size is selected by differential mobility analysis and they are collected on a filament by electrostatic precipitation. Subsequently, the sampled mass is evaporated in a clean carrier gas and analyzed by a chemical ionization mass spectrometer. Gas phase measurements are performed with the same mass spectrometer during the sampling of particles. The characterization shows reproducible results, with a particle size resolution of 1.19 and the transmission efficiency for 15 nm particles being slightly above 50 %. The signal from the evaporation of a test substance can be detected starting from 0.01 ng and shows a linear response in the mass spectrometer. Instrument operation in the range of pg/m3 is demonstrated by an example measurement of 15 nm particles produced by nucleation from dimethylamine, sulfuric acid and water.
The ambient and laboratory molecular and ion clusters were investigated. Here we present data on the ambient concentrations of both charged and uncharged molecular clusters as well as the performance of a pulse height condensation particle counter (PH-CPC) and an expansion condensation particle counter (E-CPC). The ambient molecular cluster concentrations were measured using both instruments, and they were deployed in conjunction with ion spectrometers and other aerosol instruments in Hyytiälä, Finland at the SMEAR II station during 1 March to 30 June 2007. The observed cluster concentrations varied and were from ca. 1000 to 100 000 cm−3. Both instruments showed similar concentrations. The average size of detected clusters was approximately 1.8 nm. As the atmospheric measurements at sub 2-nm particles and molecular clusters are a challenging task, and we were most likely unable to detect the smallest clusters, the reported concentrations are our best estimates for minimum cluster concentrations in boreal forest environment.
This study presents an evaluation of a pulse height condensation particle counter (PH-CPC) and an expansion condensation particle counter (E-CPC) in terms of measuring ambient and laboratory-generated molecular and ion clusters. Ambient molecular cluster concentrations were measured with both instruments as they were deployed in conjunction with an ion spectrometer and other aerosol instruments in Hyytiälä, Finland at the SMEAR II station between 1 March and 30 June 2007. The observed cluster concentrations varied and ranged from some thousands to 100 000 cm -3. Both instruments showed similar (within a factor of ~5) concentrations. An average size of the detected clusters was approximately 1.8 nm. As the atmospheric measurement of sub 2-nm particles and molecular clusters is a challenging task, we conclude that most likely we were unable to detect the smallest clusters. Nevertheless, the reported concentrations are the best estimates to date for minimum cluster concentrations in a boreal forest environment.
Amines are potentially important for atmospheric new particle formation, but their concentrations are usually low with typical mixing ratios in the pptv range or even smaller. Therefore, the demand for highly sensitive gas-phase amine measurements has emerged in the last several years. Nitrate chemical ionization mass spectrometry (CIMS) is routinely used for the measurement of gas-phase sulfuric acid in the sub-pptv range. Furthermore, extremely low volatile organic compounds (ELVOCs) can be detected with a nitrate CIMS. In this study we demonstrate that a nitrate CIMS can also be used for the sensitive measurement of dimethylamine (DMA, (CH3)2NH) using the NO3−•(HNO3)1 − 2• (DMA) cluster ion signal. Calibration measurements were made at the CLOUD chamber during two different measurement campaigns. Good linearity between 0 and ∼ 120 pptv of DMA as well as a sub-pptv detection limit of 0.7 pptv for a 10 min integration time are demonstrated at 278 K and 38 % RH.