Refine
Document Type
- Article (7)
- Preprint (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- EEG (2)
- Human behaviour (2)
- working memory (2)
- "Oddball"-Paradigma (1)
- Arbeitsgedächtnis (1)
- Arbeitsgedächtnisabruf (1)
- Aufmerksamkeit (1)
- Bindungsproblem (1)
- Cognitive neuroscience (1)
- Elektroencephalographie (1)
Institute
Previous magnetoencephalography (MEG) studies have revealed gamma-band activity at sensors over parietal and fronto-temporal cortex during the delay phase of auditory spatial and non-spatial match-to-sample tasks, respectively. While this activity was interpreted as reflecting the memory maintenance of sound features, we noted that task-related activation differences might have been present already prior to the onset of the sample stimulus. The present study focused on the interval between a visual cue indicating which sound feature was to be memorized (lateralization or pitch) and sample sound presentation to test for task-related activation differences preceding stimulus encoding. MEG spectral activity was analyzed with cluster randomization tests (N = 15). Whereas there were no differences in frequencies below 40 Hz, gamma-band spectral amplitude (about 50–65 and 90–100 Hz) was higher for the lateralization than the pitch task. This activity was localized at right posterior and central sensors and present for several hundred ms after task cue offset. Activity at 50–65 Hz was also increased throughout the delay phase for the lateralization compared with the pitch task. Apparently cortical networks related to auditory spatial processing were activated after participants had been informed about the task.
The timing of feedback to early visual cortex in the perception of long-range apparent motion
(2008)
When 2 visual stimuli are presented one after another in different locations, they are often perceived as one, but moving object. Feedback from area human motion complex hMT/V5+ to V1 has been hypothesized to play an important role in this illusory perception of motion. We measured event-related responses to illusory motion stimuli of varying apparent motion (AM) content and retinal location using Electroencephalography. Detectable cortical stimulus processing started around 60-ms poststimulus in area V1. This component was insensitive to AM content and sequential stimulus presentation. Sensitivity to AM content was observed starting around 90 ms post the second stimulus of a sequence and most likely originated in area hMT/V5+. This AM sensitive response was insensitive to retinal stimulus position. The stimulus sequence related response started to be sensitive to retinal stimulus position at a longer latency of 110 ms. We interpret our findings as evidence for feedback from area hMT/V5+ or a related motion processing area to early visual cortices (V1, V2, V3).
Context information supports serial dependence of multiple visual objects across memory episodes
(2020)
Serial dependence is thought to promote perceptual stability by compensating for small changes of an object’s appearance across memory episodes. So far, it has been studied in situations that comprised only a single object. The question of how we selectively create temporal stability of several objects remains unsolved. In a memory task, objects can be differentiated by their to-be-memorized feature (content) as well as accompanying discriminative features (context). We test whether congruent context features, in addition to content similarity, support serial dependence. In four experiments, we observe a stronger serial dependence between objects that share the same context features across trials. Apparently, the binding of content and context features is not erased but rather carried over to the subsequent memory episode. As this reflects temporal dependencies in natural settings, our findings reveal a mechanism that integrates corresponding content and context features to support stable representations of individualized objects over time.
Objective: Many cancer patients complain about cognitive dysfunction. While cognitive deficits have been attributed to the side effects of chemotherapy, there is evidence for impairment at disease onset, prior to cancer-directed therapy. Further debated issues concern the relationship between self-reported complaints and objective test performance and the role of psychological distress.
Method: We assessed performance on neuropsychological tests of attention and memory and obtained estimates of subjective distress and quality of life in 27 breast cancer patients and 20 healthy controls. Testing in patients took place shortly after the initial diagnosis, but prior to subsequent therapy.
Results: While patients showed elevated distress, cognitive performance differed on a few subtests only. Patients showed slower processing speed and poorer verbal memory than controls. Objective and self-reported cognitive function were unrelated, and psychological distress correlated more strongly with subjective complaints than with neuropsychological test performance.
Conclusion: This study provides further evidence of limited cognitive deficits in cancer patients prior to the onset of adjuvant therapy. Self-reported cognitive deficits seem more closely related to psychological distress than to objective test performance.
Objective: Research on visual working memory has shown that individual stimulus features are processed in both specialized sensory regions and higher cortical areas. Much less evidence exists for auditory working memory. Here, a main distinction has been proposed between the processing of spatial and non-spatial sound features. Our aim was to examine feature-specific activation patterns in auditory working memory.
Methods: We collected fMRI data while 28 healthy adults performed an auditory delayed match-to-sample task. Stimuli were abstract sounds characterized by both spatial and non-spatial information, i.e., interaural time delay and central frequency, respectively. In separate recording blocks, subjects had to memorize either the spatial or non-spatial feature, which had to be compared with a probe sound presented after a short delay. We performed both univariate and multivariate comparisons between spatial and non-spatial task blocks.
Results: Processing of spatial sound features elicited a higher activity in a small cluster in the superior parietal lobe than did sound pattern processing, whereas there was no significant activation difference for the opposite contrast. The multivariate analysis was applied using a whole-brain searchlight approach to identify feature-selective processing. The task-relevant auditory feature could be decoded from multiple brain regions including the auditory cortex, posterior temporal cortex, middle occipital gyrus, and extended parietal and frontal regions.
Conclusion: In summary, the lack of large univariate activation differences between spatial and non-spatial processing could be attributable to the identical stimulation in both tasks. In contrast, the whole-brain multivariate analysis identified feature-specific activation patterns in widespread cortical regions. This suggests that areas beyond the auditory dorsal and ventral streams contribute to working memory processing of auditory stimulus features.
Die Vermittlung der Zusammenhänge zwischen psychologischen Funktionen und körperlichen Veränderungen sowie deren Relevanz für die Entstehung und Aufrechterhaltung von Krankheiten stellt ein zentrales Ziel der Ausbildung in Medizinischer Psychologie dar. Zur Veranschaulichung dieser Zusammenhänge führten wir ein Psychophysiologie-Praktikum im ersten vorklinischen Semester ein. Die Studierenden führten in Vierergruppen mit Hilfe ausführlicher schriftlicher Instruktionen jeweils ca. 30 Minuten andauernde praktische Übungen durch, die die folgenden Themen behandelten: (1) Stress (abhängige Variable: Herzrate), (2) "Lügendetektor" (abhängige Variable: Hautleitwertsreaktionen), (3) Biofeedback (abhängige Variable: Hauttemperatur) und (4) Elektroenzephalogramm (abhängige Variable: Amplituden der vier klassischen Frequenzbänder). Die praktischen Übungen wurden durch theoretische Gruppenarbeiten und einen Termin zur Zusammenfassung der Ergebnisse der Übungen ergänzt. Die studentische Evaluation des Praktikums war durchweg positiv. So wurde das Praktikum als Bereicherung des Kurses angesehen, und der selbstbeurteilte Kenntnisstand auf dem Gebiet der Psychophysiologie zeigte eine signifikante Verbesserung. Diese Ergebnisse sowie unsere Eindrücke während des Praktikums bekräftigten unseren Entschluss, ein Psychophysiologie-Praktikum als Teil des Kurses der Medizinischen Psychologie und Medizinischen Soziologie fest zu etablieren.
Das ereigniskorrelierte Potential (EKP) P300 ist eines der am häufigsten untersuchten Potentiale des Elektroenzephalogramms (EEG). Wegen der bedeutsamen Rolle der P300 in der kognitiven Forschung mit gesunden Probanden und psychiatrischen Patienten kommt der Suche nach ihren neuronalen Generatoren ein hoher Stellenwert zu. Man geht im Allgemeinen davon aus, dass sie kein einheitliches Potential darstellt und von mehreren weit verstreuten Quellen generiert wird. Die Fragen nach der genauen Anzahl der P300-Subkomponenten, ihrer Lokalisierung sowie den ihnen zugrunde liegenden kognitiven Prozesse sind jedoch nach wie vor ungelöst. Die Zielsetzung der vorliegenden Arbeit war, die P300 mit Hilfe der Kombination vom EEG und der funktionalen Magnetresonanztomografie (fMRT) in ihre Subkomponenten zu untergliedern und deren Quellen zu lokalisieren. Zu diesem Zweck wurden drei kombinierte EEG/fMRT-Studien durchgeführt. Die ersten beiden Studien beinhalten eine abgewandelte Form des klassischen Oddballparadigmas. Bei der dritten Studie handelt es sich um ein Arbeitsgedächtnisexperiment. Durch die Verknüpfung der fMRT-Ergebnisse mit EKP-Daten aus den beiden Oddball-Experimenten konnten die neuronalen Quellen der zwei wichtigsten Subkomponenten der P300, der P3a und P3b, lokalisiert werden. Es konnte gezeigt werden, dass inferiore und posteriore parietale (IPL bzw. PPC) und inferior temporale (IT) Areale zur Entstehung der P3b beitrugen, während hauptsächlich die präzentralen Regionen (PrCS) die P3a generierten. Die Ergebnisse des Arbeitsgedächtnisexperiments bestätigten die P3b-Quellenlokalisierung der Oddball-Untersuchung mit einr Beteiligung von PPC und IT an der Generierung der P3b-Komponente. Das Arbeitsgedächtnisexperiment verdeutlichte aber auch, dass eine komplexere Abrufanforderung (mit langen Reaktionszeiten) zu einer anhaltenden Aktivität im PPC und einer späten Antwort im ventrolateralen präfrontalen Kortex (VLPFC) führte, die eine zweite P3b-Subkomponente generierten. Durch eine umfassende zeitlich-räumliche Trennung der neuronalen Aktivität beim Arbeitsgedächtnisabruf konnten darüber hinaus die einzelnen Stufen der beteiligten Informationsverarbeitungsprozesse (mentale Chronometrie) beschrieben werden. Diese Anwendung ging über die „reine“ Quellenlokalisation der P300-Komponenten hinaus. Die Ergebnisse zeigten frühe transiente Aktivierungen im IT, die sich zeitlich mit dem Beginn einer anhaltenden Aktivität im PPC überlappten. Darüber hinaus wurden eine späte transiente Aktivität im VLPFC und eine späte anhaltende Aktivität im medialen frontalen und motorischen Kortex (MFC bzw. MC) beobachtet. Es liegt nahe, dass diese neuronalen Signaturen einzelne Stufen kognitiver Aufgabenverarbeitungsschritte wie Reizevaluation (IT), Operationen am Gedächtnispuffer (PPC), aktiven Abruf (VLPFC) und Reaktionsorganisation (MFC und MC) reflektieren. Die vorgestellten Quellenmodelle zeigten übereinstimmend, dass mehrere kortikale Generatoren das P300-EKP erzeugen. Dabei trugen neben den erwarteten parietalen interessanterweise auch inferior temporale und inferior frontale Quellen zur P3b bei, während die P3a vor allem auf anterioren Generatoren im prämotorischen Kortex basierte. Diese Ergebnisse bestätigen teilweise die bisherigen Lokalisationsmodelle, die weitgehend auf neuropsychologischen und invasiven neurophysiologischen Befunden beruhen, widersprechen ihnen aber auch zum Teil, besonders was die Abwesenheit der postulierten präfrontalen und hippocampalen Beiträge zur P3a bzw. P3b betrifft.
Die Wahrnehmung von Objekten gelingt uns jeden Tag unzählige Male – zumeist rasend schnell und problemlos. Obwohl fast immer mehrere unserer Sinne gleichzeitig bei ihrer Wahrnehmung angesprochen werden, erscheinen uns diese Objekte dennoch als ganzheitlich und geschlossen. Für die neuronale Verarbeitung eines bellenden Hundes zum Beispiel empfängt die Großhirnrinde zumindest Eingangsdaten des Seh- und des Hörsystems. Sie werden auf getrennten Pfaden und in spezialisierten Arealen mit aufsteigender Komplexität analysiert. Dieses Funktionsprinzip der parallel verteilten Verarbeitung stellt die Wissenschaftler aber auch vor das so genannte »Bindungsproblem«: Wo und wie werden die Details wieder zu einem Ganzen – zu einer neuronalen Repräsentation – zusammengefügt? Am Institut für medizinische Psychologie der Universitätsklinik Frankfurt untersuchen Neurokognitionsforscher die crossmodale Objekterkennung mit einer Kombination modernster Verfahren der Hirnforschung und kommen dabei den Ver - arbeitungspfaden in der Großhirnrinde auf die Spur.
Context information supports serial dependence of multiple visual objects across memory episodes
(2019)
Visual perception operates in an object-based manner, by integrating associated features via attention. Working memory allows a flexible access to a limited number of currently relevant objects, even when they are occluded or physically no longer present. Recently, it has been shown that we compensate for small changes of an object’s feature over memory episodes, which can support its perceptual stability. This phenomenon was termed ‘serial dependence’ and has mostly been studied in situations that comprised only a single relevant object. However, since we are typically confronted with situations where several objects have to be perceived and held in working memory, the central question of how we selectively create temporal stability of several objects has remained unsolved. As different objects can be distinguished by their accompanying context features, like their color or temporal position, we tested whether serial dependence is supported by the congruence of context features across memory episodes. Specifically, we asked participants to remember the motion directions of two sequentially presented colored dot fields per trial. At the end of a trial one motion direction was cued for continuous report either by its color (Experiment 1) or serial position (Experiment 2). We observed serial dependence, i.e., an attractive bias of currently toward previously memorized objects, between current and past motion directions that was clearly enhanced when items had the same color or serial position across trials. This bias was particularly pronounced for the context feature that was used for cueing and for the target of the previous trial. Together, these findings demonstrate that coding of current object representations depends on previous representations, especially when they share similar content and context features. Apparently the binding of content and context features is not completely erased after a memory episode, but it is carried over to subsequent episodes. As this reflects temporal dependencies in natural settings, the present findings reveal a mechanism that integrates corresponding bundles of content and context features to support stable representations of individualized objects over time.
Attention selects relevant information regardless of whether it is physically present or internally stored in working memory. Perceptual research has shown that attentional selection of external information is better conceived as rhythmic prioritization than as stable allocation. Here we tested this principle using information processing of internal representations held in working memory. Participants memorized four spatial positions that formed the endpoints of two objects. One of the positions was cued for a delayed match-non-match test. When uncued positions were probed, participants responded faster to uncued positions located on the same object as the cued position than to those located on the other object, revealing object-based attention in working memory. Manipulating the interval between cue and probe at a high temporal resolution revealed that reaction times oscillated at a theta rhythm of 6 Hz. Moreover, oscillations showed an anti-phase relationship between memorized but uncued positions on the same versus other object as the cued position, suggesting that attentional prioritization fluctuated rhythmically in an object-based manner. Our results demonstrate the highly rhythmic nature of attentional selection in working memory. Moreover, the striking similarity between rhythmic attentional selection of mental representations and perceptual information suggests that attentional oscillations are a general mechanism of information processing in human cognition. These findings have important implications for current, attention-based models of working memory.