### Refine

#### Document Type

- Working Paper (8)
- Article (1)
- Report (1)

#### Language

- English (10)

#### Has Fulltext

- yes (10)

#### Is part of the Bibliography

- no (10)

#### Keywords

- General Equilibrium (5)
- Asset Pricing (4)
- Contagion (4)
- Recursive Preferences (3)
- Asset Allocation (2)
- Asset pricing (1)
- Börse (1)
- Contagion Risk (1)
- Cross-section of expected returns (1)
- Dynamic Networks (1)

Stocks are exposed to the risk of sudden downward jumps. Additionally, a crash in one stock (or index) can increase the risk of crashes in other stocks (or indices). Our paper explicitly takes this contagion risk into account and studies its impact on the portfolio decision of a CRRA investor both in complete and in incomplete market settings. We find that the investor significantly adjusts his portfolio when contagion is more likely to occur. Capturing the time dimension of contagion, i.e. the time span between jumps in two stocks or stock indices, is thus of first-order importance when analyzing portfolio decisions. Investors ignoring contagion completely or accounting for contagion while ignoring its time dimension suffer large and economically significant utility losses. These losses are larger in complete than in incomplete markets, and the investor might be better off if he does not trade derivatives. Furthermore, we emphasize that the risk of contagion has a crucial impact on investors' security demands, since it reduces their ability to diversify their portfolios.

This paper compares two classes of models that allow for additional channels of correlation between asset returns: regime switching models with jumps and models with contagious jumps. Both classes of models involve a hidden Markov chain that captures good and bad economic states. The distinctive feature of a model with contagious jumps is that large negative returns and unobservable transitions of the economy into a bad state can occur simultaneously. We show that in this framework the filtered loss intensities have dynamics similar to self-exciting processes. Besides, we study the impact of unobservable contagious jumps on optimal portfolio strategies and filtering.

This paper analyzes the equilibrium pricing implications of contagion risk in a Lucas-tree economy with recursive preferences and jumps. We introduce a new economic channel allowing for the possibility that endowment shocks simultaneously trigger a regime shift to a bad economic state. We document that these contagious jumps have far-reaching asset pricing implications. The risk premium for such shocks is superadditive, i.e. it is 2.5\% larger than the sum of the risk premia for pure endowment shocks and regime switches. Moreover, contagion risk reduces the risk-free rate by around 0.5\%. We also derive semiclosed-form solutions for the wealth-consumption ratio and the price-dividend ratios in an economy with two Lucas trees and analyze cross-sectional effects of contagion risk qualitatively. We find that heterogeneity among the assets with respect to contagion risk can increase risk premia disproportionately. In particular, big assets with a large exposure to contagious shocks carry significantly higher risk premia.

We analyze the implications of the structure of a network for asset prices in a general equilibrium model. Networks are represented via self- and mutually exciting jump processes, and the representative agent has Epstein-Zin preferences. Our approach provides a exible and tractable unifying foundation for asset pricing in networks. The model endogenously generates results in accordance with, e.g., the robust-yetfragile feature of financial networks shown in Acemoglu, Ozdaglar, and Tahbaz-Salehi (2014) and the positive centrality premium documented in Ahern (2013). We also show that models with simpler preference assumptions cannot generate all these findings simultaneously.

We analyze the equilibrium in a two-tree (sector) economy with two regimes. The output of each tree is driven by a jump-diffusion process, and a downward jump in one sector of the economy can (but need not) trigger a shift to a regime where the likelihood of future jumps is generally higher. Furthermore, the true regime is unobservable, so that the representative Epstein-Zin investor has to extract the probability of being in a certain regime from the data. These two channels help us to match the stylized facts of countercyclical and excessive return volatilities and correlations between sectors. Moreover, the model reproduces the predictability of stock returns in the data without generating consumption growth predictability. The uncertainty about the state also reduces the slope of the term structure of equity. We document that heterogeneity between the two sectors with respect to shock propagation risk can lead to highly persistent aggregate price-dividend ratios. Finally, the possibility of jumps in one sector triggering higher overall jump probabilities boosts jump risk premia while uncertainty about the regime is the reason for sizeable diffusive risk premia.

In a parsimonious regime switching model, we find strong evidence that expected consumption growth varies over time. Adding inflation as a second variable, we uncover two states in which expected consumption growth is low, one with high and one with negative expected inflation. Embedded in a general equilibrium asset pricing model with learning, these dynamics replicate the observed time variation in stock return volatilities and stock- bond return correlations. They also provide an alternative derivation for a measure of time-varying disaster risk suggested by Wachter (2013), implying that both the disaster and the long-run risk paradigm can be extended towards explaining movements in the stock-bond correlation.

This paper analyzes the equilibrium pricing implications of contagion risk in a two-tree Lucas economy with CRRA preferences. The dividends of both trees are subject to downward jumps. Some of these jumps are contagious and increase the risk of subsequent jumps in both trees for some time interval. We show that contagion risk leads to large price-dividend ratios for small assets, a joint movement of prices in the case of a regime change from the calm to the contagion state, significantly positive correlations between assets, and large positive betas for small assets. Whereas disparities between the assets with respect to their propensity to trigger contagion barely matter for pricing, the prices of robust assets that are hardly affected by contagion and excitable assets that are severely hit by contagion differ significantly. Both in absolute terms and relatively to the market, the price of a small safe haven increases if the economy reaches the contagion state. On the contrary, the price of a small, contagion-sensitive asset exhibits a pronounced downward jump.

There has been a considerable debate about whether disaster models can rationalize the equity premium puzzle. This is because empirically disasters are not single extreme events, but long-lasting periods in which moderate negative consumption growth realizations cluster. Our paper proposes a novel way to explain this stylized fact. By allowing for consumption drops that can spark an economic crisis, we introduce a new economic channel that combines long-run and short-run risk. First, we document that our model can match consumption data of several countries. Second, it generates a large equity risk premium even if consumption drops are of moderate size.

We introduce long-run investment productivity risk in a two-sector production economy to explain the joint behavior of macroeconomic quantities and asset prices. Long-run productivity risk in both sectors, for which we provide economic and empirical justification, acts as a substitute for shocks to the marginal efficiency of investments in explaining the equity premium and the stock return volatility differential between the consumption and the investment sector. Moreover, adding moderate wage rigidities allows the model to reproduce the empirically observed positive co-movement between consumption and investment growth.

When estimating misspecified linear factor models for the cross-section of expected returns using GMM, the explanatory power of these models can be spuriously high when the estimated factor means are allowed to deviate substantially from the sample averages. In fact, by shifting the weights on the moment conditions, any level of cross-sectional fit can be attained. The mathematically correct global minimum of the GMM objective function can be obtained at a parameter vector that is far from the true parameters of the data-generating process. This property is not restricted to small samples, but rather holds in population. It is a feature of the GMM estimation design and applies to both strong and weak factors, as well as to all types of test assets.