Refine
Year of publication
Language
- English (17)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- acute-on-chronic liver failure (3)
- inflammation (3)
- ACLF (2)
- Cirrhosis (2)
- Inflammation (2)
- Liver diseases (2)
- Ascites (1)
- Blood plasma (1)
- CLIF-C ACLF score (1)
- CLIF-C ACLF-R score (1)
Institute
- Medizin (15)
- Frankfurt Institute for Advanced Studies (FIAS) (2)
- Physik (2)
Background The inhibitor telaprevir (VX-950) of the hepatitis C virus (HCV) protease NS3-4A has been tested in a recent phase 1b clinical trial in patients infected with HCV genotype 1. This trial revealed residue mutations that confer varying degrees of drug resistance. In particular, two protease positions with the mutations V36A/G/L/M and T54A/S were associated with low to medium levels of drug resistance during viral breakthrough, together with only an intermediate reduction of viral replication fitness. These mutations are located in the protein interior and far away from the ligand binding pocket. Results Based on the available experimental structures of NS3-4A, we analyze the binding mode of different ligands. We also investigate the binding mode of VX-950 by protein-ligand docking. A network of non-covalent interactions between amino acids of the protease structure and the interacting ligands is analyzed to discover possible mechanisms of drug resistance. We describe the potential impact of V36 and T54 mutants on the side chain and backbone conformations and on the non-covalent residue interactions. We propose possible explanations for their effects on the antiviral efficacy of drugs and viral fitness. Molecular dynamics simulations of T54A/S mutants and rotamer analysis of V36A/G/L/M side chains support our interpretations. Experimental data using an HCV V36G replicon assay corroborate our findings. Conclusion T54 mutants are expected to interfere with the catalytic triad and with the ligand binding site of the protease. Thus, the T54 mutants are assumed to affect the viral replication efficacy to a larger degree than V36 mutants. Mutations at V36 and/or T54 result in impaired interaction of the protease residues with the VX-950 cyclopropyl group, which explains the development of viral breakthrough variants.
Hepatitis C virus (HCV) infection is associated with alterations in host lipid and insulin signaling cascades, which are partially explained by a dependence of the HCV life cycle on key molecules in these metabolic pathways. Yet, little is known on the role in the HCV life cycle of glycogen synthase kinase 3 (GSK3), one of the most important kinases in cellular metabolism. Therefore, the impact of GSK3 on the HCV life cycle was assessed in human hepatoma cell lines harboring subgenomic genotype 1b and 2a replicons or producing cell culture-derived HCV genotype 2a by exposure to synthetic GSK3 inhibitors, GSK3 gene silencing, overexpression of GSK3 constructs and immunofluorescence analyses. In addition, the role of GSK3 in hepatitis E virus (HEV) replication was investigated to assess virus specificity of the observed findings. We found that both inhibition of GSK3 function by synthetic inhibitors as well as silencing of GSK3β gene expression resulted in a decrease of HCV replication and infectious particle production, whereas silencing of the GSK3α isoform had no relevant effect on the HCV life cycle. Conversely, overexpression of GSK3β resulted in enhanced HCV replication. In contrast, GSK3β had no effect on replication of subgenomic HEV replicon. The pro-viral effect of GSK3β on HCV replication was mediated by supporting expression of microRNA-122 (miR-122), a micro-RNA which is mandatory for wild-type HCV replication, as GSK3 inhibitors suppressed miR-122 levels and as inhibitors of GSK3 had no antiviral effect on a miR-122-independent HCV mutant. In conclusion, we have identified GSK3β is a novel host factor supporting HCV replication by maintaining high levels of hepatic miR-122 expression.
The HCV NS5A protein plays multiple roles during viral replication, including viral genome replication and virus particle assembly. The crystal structures of the NS5A N-terminal domain indicated the potential existence of the NS5A dimers formed via at least two or more distinct dimeric interfaces. However, it is unknown whether these different forms of NS5A dimers are involved in its numerous functions. To address this question, we mutated the residues lining the two different NS5A dimer interfaces and determined their effects on NS5A self-interaction, NS5A-cyclophilin A (CypA) interaction, HCV RNA replication and infectious virus production. We found that the mutations targeting either of two dimeric interfaces disrupted the NS5A self-interaction in cells. The NS5A dimer-interrupting mutations also inhibited both viral RNA replication and infectious virus production with some genotypic differences. We also determined that reduced NS5A self-interaction was associated with altered NS5A-CypA interaction, NS5A hyperphosphorylation and NS5A subcellular localization, providing the mechanistic bases for the role of NS5A self-interaction in multiple steps of HCV replication. The NS5A oligomers formed via different interfaces are likely its functional form, since the residues at two different dimeric interfaces played similar roles in different aspects of NS5A functions and, consequently, HCV replication. In conclusion, this study provides novel insight into the functional significance of NS5A self-interaction in different steps of the HCV replication, potentially, in the form of oligomers formed via multiple dimeric interfaces.
Background: Advanced liver diseases are associated with profound alterations of the coagulation system increasing the risk not only of bleeding, but also of thromboembolic complications. A recent milestone study has shown that prophylactic anticoagulation in liver cirrhosis patients results in a reduced frequency of hepatic decompensation. Yet, INR measurement, one of the most widely applied tests to assess liver function, only inaccurately predicts the risk of hepatic decompensation related to alterations of the coagulation system. To assess the relationship between selected coagulation factors / natural anticoagulants with INR, MELD score, and hepatic decompensation, we performed the present pilot study. A total number of 92 patients with various stages of liver cirrhosis were included and prospectively followed for at least 6 months. We found that important natural anticoagulants, namely antithrombin and protein C, as well as factor XI (which may also serve as an anticoagulant) decreased earlier and by a larger magnitude than one would expect from classical coagulation test results. The correlation between these factors and INR was only moderate. Importantly, reduced plasma activities of natural anticoagulants but not INR or MELD score were independent predictors of hepatic encephalopathy (P = 0.013 and 0.003 for antithrombin and protein C, respectively).
Conclusion: In patients with liver cirrhosis plasma activities of several natural anticoagulants are earlier and stronger affected than routine coagulation tests. Reduced activities of natural anticoagulants may be predictive for the development of hepatic encephalopathy.
Persistent infections with hepatitis C virus (HCV) may result in life-threatening liver disease, including cirrhosis and cancer, and impose an important burden on human health. Understanding how the virus is capable of achieving persistence in the majority of those infected is thus an important goal. Although HCV has evolved multiple mechanisms to disrupt and block cellular signaling pathways involved in the induction of interferon (IFN) responses, IFN-stimulated gene (ISG) expression is typically prominent in the HCV-infected liver. Here, we show that Toll-like receptor 3 (TLR3) expressed within uninfected hepatocytes is capable of sensing infection in adjacent cells, initiating a local antiviral response that partially restricts HCV replication. We demonstrate that this is dependent upon the expression of class A scavenger receptor type 1 (MSR1). MSR1 binds extracellular dsRNA, mediating its endocytosis and transport toward the endosome where it is engaged by TLR3, thereby triggering IFN responses in both infected and uninfected cells. RNAi-mediated knockdown of MSR1 expression blocks TLR3 sensing of HCV in infected hepatocyte cultures, leading to increased cellular permissiveness to virus infection. Exogenous expression of Myc-MSR1 restores TLR3 signaling in MSR1-depleted cells with subsequent induction of an antiviral state. A series of conserved basic residues within the carboxy-terminus of the collagen superfamily domain of MSR1 are required for binding and transport of dsRNA, and likely facilitate acidification-dependent release of dsRNA at the site of TLR3 expression in the endosome. Our findings reveal MSR1 to be a critical component of a TLR3-mediated pattern recognition receptor response that exerts an antiviral state in both infected and uninfected hepatocytes, thereby limiting the impact of HCV proteins that disrupt IFN signaling in infected cells and restricting the spread of HCV within the liver.
Interleukin-7 (IL-7) is an important cytokine with pivotal pro-survival functions in the adaptive immune system. However, the role of IL-7 in innate immunity is not fully understood. In the present study, the impact of hepatic IL-7 on innate immune cells was assessed by functional experiments as well as in patients with different stages of liver cirrhosis or acute-on-chronic liver failure (ACLF). Human hepatocytes and liver sinusoidal endothelial cells secreted IL-7 in response to stimulation with interferons (IFNs) of type I and II, yet not type III. De novo translation of interferon-response factor-1 (IRF-1) restricted IL-7 production to stimulation with type I and II IFNs. LPS-primed human macrophages were identified as innate immune target cells responding to IL-7 signaling by inactivation of Glycogen synthase kinase-3 (GSK3). IL-7-mediated GSK3 inactivation augmented LPS-induced secretion of pro-inflammatory cytokines and blunted LPS tolerance of macrophages. The IFN-IRF-1-IL-7 axis was present in liver cirrhosis patients. However, liver cirrhosis patients with or without ACLF had significantly lower concentrations of IL-7 in serum compared to healthy controls, which might contribute to LPS-tolerance in these patients. In conclusion, we propose the presence of an inflammatory cascade where IFNs of type I/II induce hepatocellular IL-7 in an IRF-1-restriced way. Beyond its role in adaptive immune responses, IL-7 appears to augment the response of macrophages to LPS and to ameliorate LPS tolerance, which may improve innate immune responses against invading pathogens.
Extracellular vesicles (EVs) are increasingly recognized as important mediators of intercellular communication. In this study, we aimed to further characterize the role of macrophage-derived EVs in immune responses against hepatitis C virus (HCV) and the potential of polyunsaturated fatty acids (PUFAs) to modulate this modality of innate immunity. To this end, EVs were isolated from interferon-stimulated macrophage cultures or from serum of patients with acute or chronic hepatitis C. EVs were characterized by electron microscopy, flow cytometry, RNA-sequencing, and Western blot analysis. The effect of EVs on replication of HCV was assessed in coculture models. Functional analyses were performed to assess the impact of PUFAs on EV-mediated antiviral immunity. We found that macrophages secreted various cytokines shortly after stimulation with type I and II IFN, which orchestrated a fast but short-lasting antiviral state. This rapid innate immune answer was followed by the production of macrophage-derived EVs, which induced a late, but long-lasting inhibitory effect on HCV replication. Of note, exposure of macrophages to PUFAs, which are important regulators of immune responses, dampened EV-mediated antiviral immune responses. Finally, EVs from patients with hepatitis C exhibited long-lasting antiviral activities during IFN therapy as well. The antiviral effect of EVs from Caucasian and Japanese patients differed, which may be explained by different nutritional uptake of PUFAs. In conclusion, our data indicate that macrophage-derived EVs mediate long-lasting inhibitory effects on HCV replication, which may bridge the time until efficient adaptive immune responses are established, and which can be blunted by PUFAs.
Background & Aims: Acute‐on‐chronic liver failure (ACLF) is characterized by high short‐term mortality and systemic inflammation (SI). Recently, different cardiodynamic states were shown to independently predict outcomes in cirrhosis. The relationship between cardiodynamic states, SI, and portal hypertension and their impact on ACLF development remains unclear. The aim of this study was therefore to evaluate the interplay of cardiodynamic state and SI on fatal ACLF development in cirrhosis.
Results: At inclusion, hemodynamic measures including cardiac index (CI) and hepatic venous pressure gradient of 208 patients were measured. Patients were followed prospectively for fatal ACLF development (primary endpoint). SI was assessed by proinflammatory markers such as interleukins (ILs) 6 and 8 and soluble IL‐33 receptor (sIL‐33R). Patients were divided according to CI (<3.2; 3.2‐4.2; >4.2 L/min/m2) in hypo‐ (n = 84), normo‐ (n = 69) and hyperdynamic group (n = 55). After a median follow‐up of 3 years, the highest risk of fatal ACLF was seen in hyperdynamic (35%) and hypodynamic patients (25%) compared with normodynamic (14%) (P = .011). Hyperdynamic patients showed the highest rate of SI. The detectable level of IL‐6 was an independent predictor of fatal ACLF development.
Conclusions: Cirrhotic patients with hyperdynamic and hypodynamic circulation have a higher risk of fatal ACLF. Therefore, the cardiodynamic state is strongly associated with SI, which is an independent predictor of development of fatal ACLF.
Background: Liver cirrhosis is associated with profound immunodysfunction, i.e. a parallel presence of chronic systemic inflammation and immunosuppression, which can result in acute-on-chronic liver failure (ACLF). Omega-3 fatty acids are precursors of pro-resolving mediators and support the resolution of inflammation.
Objective: The aim of this study was to determine plasma levels of omega-3 fatty acids in patients with liver cirrhosis and ACLF.
Methods: Patients with liver cirrhosis with and without ACLF were enrolled in a prospective cohort study and analyzed post-hoc for the present sub-study. Clinical data and biomaterials were collected at baseline and at day 7, 28 and after 3 months of follow-up. Plasma concentrations of arachidonic acid (ARA) and docosahexaenoic acid (DHA), which represent key omega-6 and -3 fatty acids, respectively, were quantified and associated with markers of systemic inflammation and severity of liver cirrhosis.
Results: A total of 117 patients were included in the present analyses. Of those, 26 (22.2%), 51 (43.6%) and 40 (34.2%) patients had compensated or decompensated liver cirrhosis, and ACLF. Plasma levels of ARA and DHA were similar in patients with compensated cirrhosis, decompensated cirrhosis, and ACLF. Furthermore, no significant association between plasma ARA or DHA and C-reactive protein or peripheral blood leukocytes were observed (P>0.05).
Conclusion: In our study plasma levels of key omega-3 and omega-6 fatty acid are neither associated with the severity of liver cirrhosis nor with liver-cirrhosis-associated systemic inflammation.
Background: MEN1 mutations can inactivate or disrupt menin function and are leading to multiple endocrine neoplasia type 1, a rare heritable tumor syndrome.
Case presentation: We report on a MEN1 family with a novel heterozygous germline mutation, c.674delG; p.Gly225Aspfs*56 in exon 4 of the MEN1 gene. Diagnosis and clinical phenotyping of MEN1 was established by laboratory tests, ultrasound, biopsy, MRI imaging and endosonography. The clinical course of the disease was followed in the index patient and her family members for eight years. The mutation was associated with distinct clinical phenotypes in the index patient and three family members harboring p.Gly225Aspfs*56. Family members affected showed primary hyperparathyroidism but variable patterns of associated endocrine tumors, adrenal cortical adenomas, prolactinoma, multifocal pancreatic neuroendocrine tumors, insulinoma and nonsecretory neuroendocrine tumors of the pancreas. The mutation c.674delG; p.Gly225Aspfs*56 leads to a frameshift from codon 225 with early truncation of the menin protein. In silico analysis predicts loss of multiple protein-menin interactions in p.Gly225Aspfs*56, potentially rendering menin insufficient to control cell division and replication. However, no aggressive neuroendocrine tumors were observed in the follow-up of this family.
Conclusions: We report a novel heterozygous MEN1 frameshift mutation, potentially causing (at least partial) inactivation of menin tumor suppression potential but lacking a genotype–phenotype correlation. Our study highlights the importance of personalized care with appropriate testing and counseling in MEN1 families.