Refine
Year of publication
Document Type
- Article (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- Affinity Labeling (2)
- Affinity Chromatography (1)
- Alkylating NAD-Analogs (1)
- Bis-azido-NAD+ Analog (1)
- Coenzyme Analogue (1)
- Coenzyme Binding (1)
- Coenzyme analogues (1)
- Complex Formation (1)
- Dehydrogenase (1)
- Dehydrogenases (1)
Institute
- Biochemie und Chemie (11)
- Medizin (9)
The NAD analogue [3-(3-acetylpyridinio)-propyl] adenosine pyrophosphate forms enzymically inactive complexes with glyceraldehyde-3-phosphate dehydrogenase from yeast and rabbit skeletal muscle. In the latter enzyme four mol of the analogue are bound with equal affinity inhibiting the enzyme in a competitive way: KI = 0.3 mM as compared to the dissociation constant KD=O.6 mм.
The brominated derivative [3- (3-bromoacetylpyridinio) -propyl] adenosine pyrophosphate is covalently bound to both enzymes causing irreversible loss of enzymic activity. Complete inactivation of the enzyme from muscle requires two moles of the analogue per mol of tetramer. The remaining two sites are still able to bind two mol of NAD+ without regain of enzymic activity. In the case of the yeast enzyme four mol of the analogue are bound. Inactivation of the rabbit muscle enzyme is accompanied by the disappearance of two out of four highly reactive sulfhydryl groups; in the yeast enzyme the four active site cysteine residues are still able to react with DTNB1 the reactivity being diminished significantly.
Hybrid formation between the native enzymes from yeast and skeletal muscle is not affected by the modification of the enzyme. Similarly the sedimentation properties of the covalently modified enzyme are indistinguishable from those of the native molecule. This indicates that both the native and the irreversibly inhibited enzyme are identical regarding their quaternary structure.
5-Acetyl-4-methyl-1-(β-D-ribofuranosyl) -imidazole-5′-phosphate reacts with diphenylphospho chloridate forming the asymmetrical pyrophosphate ester. This in turn reacts with tri-n-butylammonium phosphate yielding 5-acetyl-4-methyl-imidazole-riboside-5′-diphosphate and with tri-rcbutylammonium pyrophosphate to give the nucleotide triphosphate.
5-Acetyl-4-methyl-imidazole-riboside-5′-pyrophosphate shows in the test with pyruvate kinase a reaction rate three times slower than that of ADP; but the same Km as that of ADP. The ATP analogue is only about 10% as effective as ATP itself in the test with hexokinase, 3-phosphoglycerate kinase and gluconate kinase. Adenylate kinase and NAD+ kinase show no activity when ATP is replaced by the nucleotide-triphosphate-analogue. In presence of ATP the analogue strongly inhibits the reaction of adenylate kinase.
Alkylating NAD-Analogs, Glyceraldehyde-3 Phosphate Dehydrogenase, Half-of-the-Sites Reactivity co-(3-Bromoacetylpyridinio)alkyldiphosphoadenosines with alkyl chain lengths of 2 -6 me thylene groups inactivate glyceraldehyde-3 phosphate dehydrogenase from rabbit muscle. Half-of-the-Sites reactivity is observed in each case: The analogs are covalently bound to highly reactive cysteine residues in two of the four subunits. The remaining two subunits still bind N AD and the reactive SH-groups, although modified by SH-reagents of low molecular weight are not labeled by any of the brominated coenzyme models. This behaviour may be explained by the assumption, that the modification of 2 subunits induces structural changes in the neighboured unoccupied subunits which prevent any attack on reactive cysteine residues caused by fixation and orientation of the bromoketo-coenzyme analog when bound to the active center. Structural similarities of the covalently bound coenzyme analogs in the active center and the native ternary GAPDH-NAD-substrate complex suggest that half-of-the-sites reactivity is a natural characteristic of the enzymes catalytic mechanism.
pH-titrations with NADH show two ionizable groups in mitochondrial and cytoplasmic malate dehydrogenase, the first with a pKa in the range 6.8 -8.3 for the mitochondrial and 6.4-7.8 for the cytoplasmic enzyme, the second with a lower limit at 10.2 resp. 11. Comparison with bis-(dihydronicotinamide)-dinucleotide and dihydronicotina-mide-ribosyl-P2-ribose-pyrophosphate instead of NADH indicates that the second alkaline ionization is caused by a residue placed near the adenine binding site of the active centre of the two isoenzymes. Binding studies with NADH and NAD+ give evidence for the participation of a group in the mitochondrial enzyme with pKa 6.8, deprotonation of which is necessary for detectable association of NAD+. In contrast the fixation of NAD+ to the cytoplasmic enzyme is independent of pH.
The spectral properties of binary complexes of NAD-analogues and fragments therefrom with I.DH from pig heart or ADH from liver and yeast have been investigated. The NADH-analogues were modified by replacing adenine through benzimidazole, benzene or dihydronicotinamide. Additionally adenosine diphosphate ribose, dihydronicotinamide and dihydronicotinamide- ribose pyrophosphate-5"-ribose have been studied.
It has been shown by means of difference spectra that complexes between ADH from horse liver and analogues cause spectral changes in the region of aromatic absorption at 280 nm even when adenine is absent in the analogues. Spectral changes in the other enzymes mentioned are probably due to changes of the n-π* absorption of the adenine ring. The spectral changes upon complexing indicate hydrophobic interaction of the adenine with the enzyme protein. Fluorescence spectra vary in the intensity of the energy transfer band as well as in coenzyme emission depending on variation of the coenzym analogue. Changing of complex formation between protein and analogues at different pH-values are investigated. ADH from yeast, especially, shows a pK around 6 which suggests interaction with histidine imidazole.
[4-(3-Bromoacetylpyridinio)-butyl]adenosine pyrophosphate as a structural analog of NAD+ reacts covalently with the sulfhydryl groups of thiopropyl agarose. 10-20 μmol can be bound to 1 ml gel. Stabilization of the insoluble coenzym e is attained by treatment with sodium boro hydride (NaBH4). This complex when applied to column chromatography, allow s the separation of various dehydrogenases as a result of their different complex stability coefficients. Alcohol dehydrogenase from liver, lactate dehydrogenase, and adenylate kinase, which all bind to the ADP-analog residues of the gel matrix, can thus be separated by different salt gradients. Alcohol dehydrogenase from yeast, however, does not form a complex and can easily be eluted from the column with phosphate buffer. Glyceraldehyde-3 phosphate and aldehyde dehydrogenases can be eluted by the addition of NAD+ or NADH to the buffer. The uncharged 1,4-dihydropyridin ring of the reduced coenzyme produces a more stable complex with the dehydrogenases than the oxidized form.
Sulfhydryl Groups, Methylmercury Containing Inactivator, Coenzyme Analogue Nicotinamide-(S-methylmercury-thioinosine) dinucleotide was formed by reaction of nicotin amide-(6-thiopurine) dinucleotide with methylmercury chloride. The compound exhibits coenzyme properties in the test with LDH (Km=1.5 × 10-4 м , Vmax=12500) and LADH (Km=1.7 × 10-4 м, Vmax=27) and inactivates YADH and GAPDH. From incubations with LDH and LADH the mercury containing coenzyme could be regained by column chromatography. The compound seems to be qualified for the X-ray structure analysis of the coenzyme-enzyme complex for some dehyrogenases based on the proportion of the heavy metal.
New reactive coenzyme analogues for affinity labeling of NAD+ and NADP+ dependent dehydrogenases
(1995)
Reactive coenzyme analogues ω-(3-diazoniumpyridinium)alkyl adenosine diphosphate were prepared by reaction of ω-(3-aminopyridinium)alkyl adenosine diphosphate with nitrous acid. In these compounds the nicotinamide ribose is substituted by hydrocarbon chains of varied lengths (n-ethyl to n-pentyl). The diazonium compounds are very unstable and decompose rapidly at room temperature. They show a better stability at 0 °C. L actate and alcohol dehydrogenase do not react with any of the analogues. Glyceraldehyde-3-phosphate dehydrogenase reacts rapidly with the diazonium pentyl compound. Decreasing the length of the alkyl chain significantly decreases the inactivation velocity. 3α,20β-Hydroxysteroid dehydrogenase reacts at 0 °C with the ethyl homologue and slowly with the propyl compound. The butyl-and pentyl analogues do not inactivate at 0 °C. Tests with 14C -labeled 2-(3-diazoniumpyridinium)ethyl adenosine diphosphate show that complete loss of enzyme activity results after incorporation of 2 moles of inactivator into 1 mole of tetrameric enzyme. 4-(3-Acetylpyridinium)butyl 2 ′-phospho-adenosine diphosphate, a structural analogue of NADP +, was prepared by condensation of adenosine-2,3-cyclophospho-5′-phosphomorpholidate with (3-acetylpyridinium)butyl phosphate, followed by hydrolysis of the cyclic phosphoric acid ester with 2 ′:3′-cyclonucleotide-3′-phosphodiesterase. Because of the redox potential (-315 mV) and the distance between the pyridinium and phosphate groups, this analogue is a hydrogen acceptor and its reduced form a hydrogen donor in tests with alcohol dehyd rogenase from Thermoanaerobium brockii. The reduced form of the coenzyme analogue also is a hydrogen donor with glutathione reductase. With other NADP +-dependent dehydrogenases the com pound has been show n to be a competitive inhibitor against the natural coenzyme. The acetyl group reacts with bromine to form the bromoacetyl group. This reactive bromoacetyl analogue is a specific active-site directed irreversible inhibitor of isocitrate dehydrogenase.
Lactate dehydrogenase from pig heart is inactivated by the NAD+ -analog P1-N6-(4-azidophenylethyl)adenosine-P2-[4-(3-azidopyridinio)butyl]diphosphate (6) upon irradiation with UV light of wavelengths in the range from 300 to 380 nm. The decrease in enzyme activity can be prevented by the addition of NAD+ and oxalate. The modified enzyme shows a reduced binding capacity for its coenzyme as compared to native lactate dehydrogenase. The amount of incorporated coenzyme is deduced from the ribose content of inactivated enzyme. Tryptic digestion of the modified protein and separation of the peptides by HPLC yields 5 ribose-containing fractions. One of them, fraction 6 6 , is split by treatment with nucleotide pyrophosphatase into two subfractions, 63 and 58. Only subfraction 63 contains ribose. Whereas peptide 58 shows a UV absorption spectrum similar to that of 4-(3-aminopyridinio)-butyl phosphate (3). Amino acid analyses of the peptides indicate that the inactivator forms covalent bonds with different parts of the protein: Peptide 63 is characterized by a great portion of hydrophobic amino acids whereas peptide 58 shows a high degree of hydrophilicity.