Refine
Year of publication
Document Type
- Article (18)
- Doctoral Thesis (1)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
- Hodgkin lymphoma (2)
- classical Hodgkin lymphoma (2)
- gene expression (2)
- Affymetrix (1)
- Artificial intelligence (1)
- B-cell immunology (1)
- B-cell lymphoma (1)
- BATF3 (1)
- Bioinformatics (1)
- Bioinformatik (1)
Institute
The hallmark of Philadelphia chromosome positive (Ph+) leukemia is the BCR/ABL kinase, which is successfully targeted by selective ATP competitors. However, inhibition of BCR/ABL alone is unable to eradicate Ph+ leukemia. The t(9;22) is a reciprocal translocation which encodes not only for the der22 (Philadelphia chromosome) related BCR/ABL, but also for der9 related ABL/BCR fusion proteins, which can be detected in 65% of patients with chronic myeloid leukemia (CML) and 100% of patients with Ph+ acute lymphatic leukemia (ALL). ABL/BCRs are oncogenes able to influence the lineage commitment of hematopoietic progenitors. Aim of this study was to further disclose the role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The co-expression of p96ABL/BCR enhanced the kinase activity and as a consequence, the transformation potential of p185BCR/ABL. Targeting p96ABL/BCR by RNAi inhibited growth of Ph+ ALL cell lines and Ph+ ALL patient-derived long-term cultures (PD-LTCs). Our in vitro and in vivo stem cell studies further revealed a functional hierarchy of p96ABL/BCR and p185BCR/ABL in hematopoietic stem cells. Co-expression of p96ABL/BCR abolished the capacity of p185BCR/ABL to induce a CML-like disease and led to the induction of ALL. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL.
Background The differential diagnosis between follicular thyroid adenoma and minimal invasive follicular thyroid carcinoma is often difficult for several reasons. One major aspect is the lack of typical cytological criteria in well differentiated specimens. New marker molecules, shown by poly- or monoclonal antibodies proved helpful. Methods We performed global gene expression analysis of 12 follicular thyroid tumours (4 follicular adenomas, 4 minimal invasive follicular carcinomas and 4 widely invasive follicular carcinomas), followed by immunohistochemical staining of 149 cases. The specificity of the antibody was validated by western blot analysis Results In gene expression analysis QPRT was detected as differently expressed between follicular thyroid adenoma and follicular thyroid carcinoma. QPRT protein could be detected by immunohistochemistry in 65% of follicular thyroid carcinomas including minimal invasive variant and only 22% of follicular adenomas. Conclusion Consequently, QPRT is a potential new marker for the immunohistochemical screening of follicular thyroid nodules.
The pathogenesis of nodular lymphocyte–predominant Hodgkin lymphoma (NLPHL) and its relationship to other lymphomas are largely unknown. This is partly because of the technical challenge of analyzing its rare neoplastic lymphocytic and histiocytic (L&H) cells, which are dispersed in an abundant nonneoplastic cellular microenvironment. We performed a genome-wide expression study of microdissected L&H lymphoma cells in comparison to normal and other malignant B cells that indicated a relationship of L&H cells to and/or that they originate from germinal center B cells at the transition to memory B cells. L&H cells show a surprisingly high similarity to the tumor cells of T cell–rich B cell lymphoma and classical Hodgkin lymphoma, a partial loss of their B cell phenotype, and deregulation of many apoptosis regulators and putative oncogenes. Importantly, L&H cells are characterized by constitutive nuclear factor {kappa}B activity and aberrant extracellular signal-regulated kinase signaling. Thus, these findings shed new light on the nature of L&H cells, reveal several novel pathogenetic mechanisms in NLPHL, and may help in differential diagnosis and lead to novel therapeutic strategies.
Zur genomweiten Genexpressionsanalyse werden Microarray-Experimente verwendet. Ziel dieser Arbeit ist es, Methoden zur Präprozessierung von Microarrays der Firma Affymetrix zu evaluieren und die VSN-Methode für Experimente mit weniger als 1000 Zellen zu verbessern. Bei dieser Technologie wird die Expression jedes Gens durch mehrere Probessets gemessen. Jedes Probeset besteht aus einem Perfect-Match (PM) und einem dazugehörigen Mismatch (MM). Der Expressionswert pro Gen wird durch ein vierstufiges Verfahren aus den einzelnen Probe-Werten berechnet: Hintergrundkorrektur, Normalisierung, PM-Adjustierung und Aggregation. Für jeden dieser Schritte existieren mehrere Algorithmen. Dazu dienten die im affy-Paket des Bioconductor implementierten Methoden MAS5, RMA, VSN und die Methode sRMA von Cope et al. [Cope et al., 2006] in Kombination mit der Methode VSN von Huber et al. [Huber et al., 2002]. Den ersten Teil dieser Arbeit bildet die Reanalyse der Datensätze von Küppers et al. [Küppers et al., 2003] und Piccaluga et al. [Piccaluga et al., 2007] mit der VSN-Methode. Dabei konnte gezeigt werden, dass die VSN-Methode gegenüber Klein et al. [Klein et al., 2001] Vorteile zeigt. Bei beiden Datensätzen wurden zusätzliche Gene gefunden, die für die Pathogenese der jeweiligen Tumorarten wichtig sein können. Einige der zusätzlich gefunden Gene wurden durch andere wissenschaftliche Arbeiten bestätigt. Die Gene, die bisher in keinem Zusammenhang mit der untersuchten Tumorart stehen, sind eine Möglichkeit für die weitere Forschung. Vor allem der Zytokine/Zytokine Signalweg wurde bei beiden Reanalysen als überrepräsentiert erkannt. Da für einige Microarray-Experimente die Anzahl der Zellen und damit die Menge an mRNA nur begrenzt zur Verfügung stehen, müssen die Laborarbeit und die statistischen Analysen angepasst werden. Hierzu werden fünf Methoden für die Präprozessierung untersucht, um zu evaluieren, welche Methode geeignet ist, derartige Expressionsdaten zu verrechnen. Auf Basis eines Testdatensatzes der bereits zur Etablierung des Laborprozesses diente werden Expressionswerte durch empirische Verteilung, Gammaverteilung und ein linear gemischtes Modell simuliert. Die Simulation lässt sich in vier Schritte einteilen: Wahl der Verteilung, Simulation der Expressionsmatrix, Simulation der differentiellen Expression, Sortierung der Probes innerhalb des Probesets. Anschließend werden die fünf Präprozessierungsmethoden mit diesen simulierten Expressionsdaten auf ihre Sensitivität und Spezifität untersucht. Während sich bei den empirisch und gammaverteilt simulierten Expressionsdaten kein eindeutiges Ergebnis abzeichnet, hat sVSN bei den Daten aus dem linear gemischten Modell die größte Sensitivität und die größte Spezifität. Der in dieser Arbeit entwickelte sVSN-Algorithmus wurde zum ersten Mal angewendet und bewertet. Abschließend wird ein Teildatensatz von Brune et al. verwendet und hinsichtlich der fünf Präprozessierungsmethoden untersucht. Die Ergebnisse der sVSN-Methode wird im Detail weiter verfolgt. Die zusätzlich gefunden Gene können durch bereits veröffentlichte Arbeiten bestätigt werden. Letztendlich zeigt sich, dass neuere statistische Methoden (wie das im Rahmen dieser Arbeit entwickelte sVSN) bei der Analyse von Affymetrix Microarrays einen Vorteil bringen. Die sVSN und sRMA Methoden zeigen Vorteile, da die Probes nach der Normalisierung gewichtet werden, bevor diese aggregiert werden. Die MAS5-Methode schneidet am schlechtesten ab und sollte bei geringen Zellmengen nicht eingesetzt werden. Für die Analyse mit geringer Menge an mRNA müssen weitere Untersuchungen vorgenommen werden, um eine geeignete statistische Methode für die Analyse der Expressionsdaten zu finden.
Anaplastic large cell lymphoma (ALCL) and classical Hodgkin lymphoma (cHL) are lymphomas that contain CD30-expressing tumor cells and have numerous pathological similarities. Whereas ALCL is usually diagnosed at an advanced stage, cHL more frequently presents with localized disease. The aim of the present study was to elucidate the mechanisms underlying the different clinical presentation of ALCL and cHL. Chemokine and chemokine receptor expression were similar in primary ALCL and cHL cases apart from the known overexpression of the chemokines CCL17 and CCL22 in the Hodgkin and Reed-Sternberg (HRS) cells of cHL. Consistent with the overexpression of these chemokines, primary cHL cases encountered a significantly denser T cell microenvironment than ALCL. Additionally to differences in the interaction with their microenvironment, cHL cell lines presented a lower and less efficient intrinsic cell motility than ALCL cell lines, as assessed by time-lapse microscopy in a collagen gel and transwell migration assays. We thus propose that the combination of impaired basal cell motility and differences in the interaction with the microenvironment hamper the dissemination of HRS cells in cHL when compared with the tumor cells of ALCL.
Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is an indolent lymphoma, but can transform into diffuse large B cell lymphoma (DLBCL), showing a more aggressive clinical behavior. Little is known about these cases on the molecular level. Therefore, the aim of the present study was to characterize DLBCL transformed from NLPHL (LP-DLBCL) by gene expression profiling (GEP). GEP revealed an inflammatory signature pinpointing to a specific host response. In a coculture model resembling this host response, DEV tumor cells showed an impaired growth behavior. Mechanisms involved in the reduced tumor cell proliferation included a downregulation of MYC and its target genes. Lack of MYC expression was also confirmed in 12/16 LP-DLBCL by immunohistochemistry. Furthermore, CD274/PD-L1 was upregulated in DEV tumor cells after coculture with T cells or monocytes and its expression was validated in 12/19 cases of LP-DLBCL. Thereby, our data provide new insights into the pathogenesis of LP-DLBCL and an explanation for the relatively low tumor cell content. Moreover, the findings suggest that treatment of these patients with immune checkpoint inhibitors may enhance an already ongoing host response in these patients.
The mechanisms involved in malignant transformation of mature B and T lymphocytes are still poorly understood. In a previous study, we compared gene expression profiles of the tumor cells of Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL) to their normal cellular counterparts and found the basic leucine zipper protein ATF-like 3 (BATF3) to be significantly upregulated in the tumor cells of both entities. To assess the oncogenic potential of BATF3 in lymphomagenesis and to dissect the molecular interactions of BATF3 in lymphoma cells, we retrovirally transduced murine mature T and B cells with a BATF3-encoding viral vector and transplanted each population into Rag1-deficient recipients. Intriguingly, BATF3-expressing B lymphocytes readily induced B-cell lymphomas after characteristic latencies, whereas T-cell transplanted animals remained healthy throughout the observation time. Further analyses revealed a germinal center B-cell-like phenotype of most BATF3-initiated lymphomas. In a multiple myeloma cell line, BATF3 inhibited BLIMP1 expression, potentially illuminating an oncogenic action of BATF3 in B-cell lymphomagenesis. In conclusion, BATF3 overexpression induces malignant transformation of mature B cells and might serve as a potential target in B-cell lymphoma treatment.
The hallmark of classical Hodgkin lymphoma (cHL) is the presence of giant, mostly multinucleated Hodgkin-Reed-Sternberg (HRS) cells. Whereas it has recently been shown that giant HRS cells evolve from small Hodgkin cells by incomplete cytokinesis and re-fusion of tethered sister cells, it remains unsolved why this phenomenon particularly takes place in this lymphoma and what the differences between these cell types of variable sizes are. The aim of the present study was to characterize microdissected small and giant HRS cells by gene expression profiling and to assess differences of clonal growth behavior as well as susceptibility toward cytotoxic intervention between these different cell types to provide more insight into their distinct cellular potential. Applying stringent filter criteria, only two differentially expressed genes between small and giant HRS cells, SHFM1 and LDHB, were identified. With looser filter criteria, 13 genes were identified to be differentially overexpressed in small compared to giant HRS cells. These were mainly related to energy metabolism and protein synthesis, further suggesting that small Hodgkin cells resemble the proliferative compartment of cHL. SHFM1, which is known to be involved in the generation of giant cells, was downregulated in giant RS cells at the RNA level. However, reduced mRNA levels of SHFM1, LDHB and HSPA8 did not translate into decreased protein levels in giant HRS cells. In cell culture experiments it was observed that the fraction of small and big HRS cells was adjusted to the basic level several days after enrichment of these populations via cell sorting, indicating that small and big HRS cells can reconstitute the full spectrum of cells usually observed in the culture. However, assessment of clonal growth of HRS cells indicated a significantly reduced potential of big HRS cells to form single cell colonies. Taken together, our findings pinpoint to strong similarities but also some differences between small and big HRS cells.
Background: Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) usually presents in middle aged men and shows an indolent clinical behavior. However, up to 30% of the patients present a secondary transformation into aggressive diffuse large B cell lymphoma (DLBCL). The aim of the present study was to characterize morphology and immunophenotype of this kind of DLBCL in detail and compare it with conventional DLBCL.
Methods: Morphology and immunophenotype of 33 cases of NLPHL with simultaneous or sequential transformation into DLBCL were investigated. These cases were compared with 41 de novo DLBCL in Finnish men.
Results: The majority of cases exhibited different immunophenotypes in the NLPHL and the DLBCL components. The immunophenotype of the DLBCL secondary to NLPHL was heterogeneous. However, BCL6, EMA, CD75 and J-chain were usually expressed in both components (≥73% positive). Overall, the NLPHL component was more frequently positive for EMA, CD75 and J-chain than the DLBCL component. In contrast, B cell markers, CD10 and BCL2, were more frequently expressed and were expressed at higher levels in the DLBCL component than in the NLPHL component. In the independent series of de novo DLBCL 4 cases could be identified with a growth pattern and immunophenotype that suggested that they had arisen secondarily from NLPHL.
Conclusions: The morphology and immunophenotype of DLBCL arisen from NLPHL is heterogeneous. Further characterization of the particular molecular features of this subgroup is warranted to be able to better identify these cases among conventional DLBCL.
Classical Hodgkin lymphoma (cHL) is one of the most common malignant lymphomas in Western Europe. The nodular sclerosing subtype of cHL (NS cHL) is characterized by a proliferation of fibroblasts in the tumor microenvironment, leading to fibrotic bands surrounding the lymphoma infiltrate. Several studies have described a crosstalk between the tumour cells of cHL, the Hodgkin- and Reed-Sternberg (HRS) cells, and cancer-associated fibroblasts. However, to date a deep molecular characterization of these fibroblasts is lacking. Thus, the aim of the present study is a comprehensive characterization of these fibroblasts. Gene expression profiling and methylation profiles of fibroblasts isolated from primary lymph node suspensions revealed persistent differences between fibroblasts obtained from NS cHL and lymphadenitis. NS cHL derived fibroblasts exhibit a myofibroblastic phenotype characterized by myocardin (MYOCD) expression. Moreover, TIMP3, an inhibitor of matrix metalloproteinases, was strongly upregulated in NS cHL fibroblasts, likely contributing to the accumulation of collagen in sclerotic bands of NS cHL. As previously shown for other types of cancer-associated fibroblasts, treatment by luteolin could reverse this fibroblast phenotype and decrease TIMP3 secretion. NS cHL fibroblasts showed enhanced proliferation when they were exposed to soluble factors released from HRS cells. For HRS cells, soluble factors from fibroblasts were not sufficient to protect them from Brentuximab-Vedotin induced cell death. However, HRS cells adherent to fibroblasts were protected from Brentuximab-Vedotin induced injury. In summary, we confirm the importance of fibroblasts for HRS cell survival and identify TIMP3 which probably contributes as a major factor to the typical fibrosis observed in NS cHL.