Refine
Year of publication
Document Type
- Article (65)
- Preprint (2)
- Conference Proceeding (1)
Language
- English (68)
Has Fulltext
- yes (68)
Is part of the Bibliography
- no (68)
Keywords
- Nuclear reactions (2)
- Radiative capture (2)
- 140Ce (1)
- ARDS (1)
- Accelerators & Beams (1)
- Accelerators & storage rings (1)
- Atomic & molecular beams (1)
- Atomic, Molecular & Optical (1)
- Beam loss (1)
- COVID-19 (1)
Institute
- Physik (65)
- ELEMENTS (7)
- Biochemie, Chemie und Pharmazie (1)
- Medizin (1)
Stored and cooled highly-charged ions offer unprecedented capabilities for precision studies in realm of atomic-, nuclear-structure and astrophysics. In context of the latter, after the successful investigation of the cross section of 96Ru(p,γ) in 2009, in 2016 the first measurement of the 124Xe(p,γ)125Cs reaction was performed at the Experimental Storage Ring (ESR) at GSI.
The radiative capture cross section of 238U is very important for the developing of new reactor technologies and the safety of existing ones. Here the preliminary results of the 238U(n,γ) cross section measurement performed at n_TOF with C6D6 scintillation detectors are presented, paying particular attention to data reduction and background subtraction.
We have measured the radiative neutron-capture cross section and the total neutron-induced cross section of one of the most important isotopes for the s process, the 25Mg. The measurements have been carried out at the neutron time-of-flight facilities n_TOF at CERN (Switzerland) and GELINA installed at the EC-JRC-IRMM (Belgium). The cross sections as a function of neutron energy have been measured up to approximately 300 keV, covering the energy region of interest to the s process. The data analysis is ongoing and preliminary results show the potential relevance for the s process.
Background: Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk and predict ICU survival and outcomes. Methods: A Germany-wide electronic registry was established to pseudonymously collect admission, therapeutic and discharge information of SARS-CoV-2 ICU patients retrospectively and prospectively. Machine learning approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine approach was selected as the most suitable method. Individual, non-linear shape functions for predictive parameters and parameter interactions are reported. Results: 1039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively collected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to be more reliable to predict “survival”. Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admission were shown to be predictive of ICU survival. Patients’ age, pulmonary dysfunction and transfer from an external institution were predictors for ECMO therapy. The interaction of patient age with D-dimer levels on admission and creatinine levels with SOFA score without GCS were predictors for renal replacement therapy. Conclusions: Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and identified novel predictors for outcome in critically ill COVID-19 patients. Using this strategy, predictive modeling of COVID-19 ICU patient outcomes can be performed overcoming the limitations of linear regression models. Trial registration “ClinicalTrials” (clinicaltrials.gov) under NCT04455451.
Stored and cooled, highly-charged ions offer unprecedented capabilities for precision studies in the realm of atomic, nuclear structure and astrophysics[1]. After the successful investigation of the 96Ru(p,7)97Rh reaction cross section in 2009[2], the first measurement of the 124Xe(p,7)125Cs reaction cross section has been performed with decelerated, fully-ionized 124Xe ions in 2016 at the Experimental Storage Ring (ESR) of GSI[3]. Using a Double Sided Silicon Strip Detector, introduced directly into the ultra-high vacuum environment of a storage ring, the 125Cs proton-capture products have been successfully detected. The cross section has been measured at 5 different energies between 5.5AMeV and 8AMeV, on the high energy tail of the Gamow-window for hot, explosive scenarios such as supernovae and X-ray binaries. The elastic scattering on the H2 gas jet target is the major source of background to count the (p,7) events. Monte Carlo simulations show that an additional slit system in the ESR in combination with the energy information of the Si detector will enable background free measurements of the proton-capture products. The corresponding hardware is being prepared and will increase the sensitivity of the method tremendously.
Destruction of the cosmic γ-ray emitter 26Al in massive stars: study of the key 26Al(n,p) reaction
(2021)
The 26Al(n,p)26Mg reaction is the key reaction impacting on the abundances of the cosmic γ-ray emitter 26Al produced in massive stars and impacts on the potential pollution of the early solar system with 26Al by asymptotic giant branch stars. We performed a measurement of the 26Al(n,p)26Mg cross section at the high-flux beam line EAR-2 at the n_TOF facility (CERN). We report resonance strengths for eleven resonances, nine being measured for the first time, while there is only one previous measurement for the other two. Our resonance strengths are significantly lower than the only previous values available. Our cross-section data range to 150 keV neutron energy, which is sufficient for a reliable determination of astrophysical reactivities up to 0.5 GK stellar temperature.
Monte Carlo (MC) simulations are an essential tool to determine fundamental features of a neutron beam, such as the neutron flux or the γ-ray background, that sometimes can not be measured or at least not in every position or energy range. Until recently, the most widely used MC codes in this field had been MCNPX and FLUKA. However, the Geant4 toolkit has also become a competitive code for the transport of neutrons after the development of the native Geant4 format for neutron data libraries, G4NDL. In this context, we present the Geant4 simulations of the neutron spallation target of the n_TOF facility at CERN, done with version 10.1.1 of the toolkit. The first goal was the validation of the intra-nuclear cascade models implemented in the code using, as benchmark, the characteristics of the neutron beam measured at the first experimental area (EAR1), especially the neutron flux and energy distribution, and the time distribution of neutrons of equal kinetic energy, the so-called Resolution Function. The second goal was the development of a Monte Carlo tool aimed to provide useful calculations for both the analysis and planning of the upcoming measurements at the new experimental area (EAR2) of the facility.
Measurement of the 244Cm and 246Cm neutron-induced capture cross sections at the n_TOF facility
(2019)
The neutron capture reactions of the 244Cm and 246Cm isotopes open the path for the formation of heavier Cm isotopes and heavier elements such as Bk and Cf in a nuclear reactor. In addition, both isotopes belong to the minor actinides with a large contribution to the decay heat and to the neutron emission in irradiated fuels. There are only two previous 244Cm and 246Cm capture cross section measurements: one in 1969 using a nuclear explosion [1] and the most recent data measured at J-PARC in 2010 [2]. The data for both isotopes are very scarce due to the difficulties in performing the measurements: high intrinsic activity of the samples and limited facilities capable of providing isotopically enriched samples.
We have measured both neutron capture cross sections at the n_TOF Experimental Area 2 (EAR-2) with three C6 D6 detectors and also at Area 1 (EAR-1) with the TAC. Preliminary results assessing the quality and limitations (back-ground subtraction, measurement technique and counting statistics) of this new experimental datasets are presented and discussed.
New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241Am(n,γ) cross section at the n_TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental and evaluated data published before. Our results also indicate that the 241Am(n,γ) cross section is underestimated in the present evaluated libraries between 20 eV and 2 keV by 25%, on average, and up to 35% for certain evaluations and energy ranges.
Although the 12C(n,p)12B and 12C(n,d)11B reactions are of interest in several fields of basic and applied Nuclear Physics the present knowledge of these two cross-sections is far from being accurate and reliable, with both evaluations and data showing sizable discrepancies. As part of the challenging n_TOF program on (n,cp) nuclear reactions study, the energy differential cross-sections of the 12C(n,p)12B and 12C(n,d)11 B reactions have been measured at CERN from the reaction thresholds up to 30 MeV neutron energy. Both measurements have been recently performed at the long flight-path (185 m) experimental area of the n_TOF facility at CERN using a pure (99.95%) rigid graphite target and two silicon telescopes. In this paper an overview of the experiment is presented together with a few preliminary results.