Refine
Document Type
- Article (6)
- Working Paper (1)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Anthropogene Klimaänderung (1)
- Cognitive impairment (1)
- Grundwasser (1)
- Modellierung (1)
- NMDA IgA/IgM antibodies (1)
- NMDA antibody (1)
- Parkinson disease (1)
- Wassermangel (1)
- climate change (1)
- global modeling (1)
Institute
No association between Parkinson disease and autoantibodies against NMDA-type glutamate receptors
(2019)
Background: IgG-class autoantibodies to N-Methyl-D-Aspartate (NMDA)-type glutamate receptors define a novel entity of autoimmune encephalitis. Studies examining the prevalence of NMDA IgA/IgM antibodies in patients with Parkinson disease with/without dementia produced conflicting results. We measured NMDA antibodies in a large, well phenotyped sample of Parkinson patients without and with cognitive impairment (n = 296) and controls (n = 295) free of neuropsychiatric disease. Detailed phenotyping and large numbers allowed statistically meaningful correlation of antibody status with diagnostic subgroups as well as quantitative indicators of disease severity and cognitive impairment.
Methods: NMDA antibodies were analysed in the serum of patients and controls using well established validated assays. We used anti-NMDA antibody positivity as the main independent variable and correlated it with disease status and phenotypic characteristics.
Results: The frequency of NMDA IgA/IgM antibodies was lower in Parkinson patients (13%) than in controls (22%) and higher than in previous studies in both groups. NMDA IgA/IgM antibodies were neither significantly associated with diagnostic subclasses of Parkinson disease according to cognitive impairment, nor with quantitative indicators of disease severity and cognitive impairment. A positive NMDA antibody status was positively correlated with age in controls but not in Parkinson patients.
Conclusion: It is unlikely albeit not impossible that NMDA antibodies play a significant role in the pathogenesis or progression of Parkinson disease e.g. to Parkinson disease with dementia, while NMDA IgG antibodies define a separate disease of its own.
Within the framework of the Transboundary Waters Assessment Programme (TWAP), initiated by the Global Environment Facility (GEF), we contributed to a comprehensive baseline assessment of transboundary aquifers (TBAs) by quantifying different groundwater indicators using the global water resources and water use model WaterGAP 2.2. All indicators were computed under current (2010) and projected conditions in 2030 and 2050 for 91 selected TBAs larger than 20,000 km2 and for each nation’s share of the TBAs (TBA-CU: country unit). TBA outlines were provided by the International Groundwater Resources Assessment Centre (IGRAC). The set of indicators comprises groundwater recharge, groundwater depletion, per-capita groundwater recharge, dependency on groundwater, population density, and groundwater development stress (groundwater withdrawals to groundwater recharge). Only the latter four indicators were projected to 2030 and 2050. Current-state indicators were quantified using the Watch Forcing Data climate dataset, while projections were based on five climate scenarios that were computed by five global climate models for the high-emissions scenario RCP 8.5. Water use projections were based on the Shared Socio-economic Pathway SSP2 developed within ISI-MIP. Furthermore, two scenarios of future irrigated areas were explored. For individual water use sectors, the fraction of groundwater abstraction was assumed to remain at the current level.
According to our assessment, aquifers with the highest current groundwater depletion rates worldwide are not transboundary. Exceptions are the Neogene Aquifer System (Syria) with 53 mm/yr between 2000 and 2009 and the Indus River Plain aquifer (India) with 28 mm/yr. For current conditions, we identified 20 out of 258 TBA-CUs suffering from medium to very high groundwater development stress, which are located in the Middle East and North Africa region, in South Asia, China, and the USA. Considering projections, ensemble means of per-cent changes or percent point changes to current conditions were determined. Per-capita groundwater recharge is projected to decrease in 80-90% of all TBA-CUs until 2030/2050. Due to the strongly varying projections of the global climate models, we applied a worst-case scenario approach to define future hotspots of groundwater development stress, taking into account the strongest computed increase until either 2030 or 2050 among all scenarios and individual GCMs. Based on this approach, the number of TBA-CUs under at least medium groundwater development stress increases from 20 to 58, comprising all hotspots under current conditions. New hotspots are projected to develop mainly in Sub-Saharan Africa, China, and Mexico.
The assessment of water balance components using global hydrological models is subject to climate forcing uncertainty as well as to an increasing intensity of human water use within the 20th century. The uncertainty of five state-of-the-art climate forcings and the resulting range of cell runoff that is simulated by the global hydrological model WaterGAP is presented. On the global land surface, about 62 % of precipitation evapotranspires, whereas 38 % discharges into oceans and inland sinks. During 1971–2000, evapotranspiration due to human water use amounted to almost 1 % of precipitation, while this anthropogenic water flow increased by a factor of approximately 5 between 1901 and 2010. Deviation of estimated global discharge from the ensemble mean due to climate forcing uncertainty is approximately 4 %. Precipitation uncertainty is the most important reason for the uncertainty of discharge and evapotranspiration, followed by shortwave downward radiation. At continental levels, deviations of water balance components due to uncertain climate forcing are higher, with the highest discharge deviations occurring for river discharge in Africa (−6 to 11 % from the ensemble mean). Uncertain climate forcings also affect the estimation of irrigation water use and thus the estimated human impact of river discharge. The uncertainty range of global irrigation water consumption amounts to approximately 50 % of the global sum of water consumption in the other water use sector.
Obesity and associated lifestyle in a large sample of multi-morbid German primary care attendees
(2014)
Background: Obesity and the accompanying increased morbidity and mortality risk is highly prevalent among older adults. As obese elderly might benefit from intentional weight reduction, it is necessary to determine associated and potentially modifiable factors on senior obesity. This cross-sectional study focuses on multi-morbid patients which make up the majority in primary care. It reports on the prevalence of senior obesity and its associations with lifestyle behaviors.
Methods: A total of 3,189 non-demented, multi-morbid participants aged 65–85 years were recruited in primary care within the German MultiCare-study. Physical activity, smoking, alcohol consumption and quantity and quality of nutritional intake were classified as relevant lifestyle factors. Body Mass Index (BMI, general obesity) and waist circumference (WC, abdominal obesity) were used as outcome measures and regression analyses were conducted.
Results: About one third of all patients were classified as obese according to BMI. The prevalence of abdominal obesity was 73.5%. Adjusted for socio-demographic variables and objective and subjective disease burden, participants with low physical activity had a 1.6 kg/m2 higher BMI as well as a higher WC (4.9 cm, p<0.001). Current smoking and high alcohol consumption were associated with a lower BMI and WC. In multivariate logistic regression, using elevated WC and BMI as categorical outcomes, the same pattern in lifestyle factors was observed. Only for WC, not current but former smoking was associated with a higher probability for elevated WC. Dietary intake in quantity and quality was not associated with BMI or WC in either model.
Conclusions: Further research is needed to clarify if the huge prevalence discrepancy between BMI and WC also reflects a difference in obesity-related morbidity and mortality. Yet, age-specific thresholds for the BMI are needed likewise. Encouraging and promoting physical activity in older adults might a starting point for weight reduction efforts.
When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901–2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971–2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non-calibrated regions, respectively. These simulation results support the need for extended Q measurements and data sharing for better constraining global water balance assessments. Over the 20th century, the human footprint on natural water resources has become larger. For 11–18% of the global land area, the change of Q between 1941–1970 and 1971–2000 was driven more strongly by change of human water use including dam construction than by change in precipitation, while this was true for only 9–13 % of the land area from 1911–1940 to 1941–1970.
When assessing global water resources with hydrological models, it is essential to know the methodological uncertainties in the water resources estimates. The study presented here quantifies effects of the uncertainty in the spatial and temporal patterns of meteorological variables on water balance components at the global, continental and grid cell scale by forcing the global hydrological model WaterGAP 2.2 (ISI-MIP 2.1) with five state-of-the-art climate forcing input data-sets. While global precipitation over land during 1971–2000 varies between 103 500 and 111 000 km3 yr−1, global river discharge varies between 39 200 and 42 200 km3 yr−1. Temporal trends of global wa- ter balance components are strongly affected by the uncertainty in the climate forcing (except human water abstractions), and there is a need for temporal homogenization of climate forcings (in particular WFD/WFDEI). On about 10–20 % of the global land area, change of river discharge between two consecutive 30 year periods was driven more strongly by changes of human water use including dam construction than by changes in precipitation. This number increases towards the end of the 20th century due to intensified human water use and dam construction. The calibration approach of WaterGAP against observed long-term average river discharge reduces the impact of climate forcing uncertainty on estimated river discharge significantly. Different homgeneous climate forcings lead to a variation of Q of only 1.6 % for the 54 % of global land area that are constrained by discharge observations, while estimated renewable water resources in the remaining uncalibrated regions vary by 18.5 %. Uncertainties are especially high in Southeast Asia where Global Runoff Data Centre (GRDC) data availability is very sparse. By sharing already available discharge data, or installing new streamflow gauging stations in such regions, water balance uncertainties could be reduced which would lead to an improved assessment of the world’s water resources.
Objectives Our study aimed to assess the frequency of potentially inappropriate medication (PIM) use (according to three PIM lists) and to examine the association between PIM use and cognitive function among participants in the MultiCare cohort. Design MultiCare is conducted as a longitudinal, multicentre, observational cohort study. Setting The MultiCare study is located in eight different study centres in Germany. Participants 3189 patients (59.3% female). Primary and secondary outcome measures The study had a cross-sectional design using baseline data from the German MultiCare study. Prescribed and over-the-counter drugs were classified using FORTA (Fit fOR The Aged), PRISCUS (Latin for ‘time-honoured’) and EU(7)-PIM lists. A mixed-effect multivariate linear regression was performed to calculate the association between PIM use patients’ cognitive function (measured with (LDST)). Results Patients (3189) used 2152 FORTA PIM (mean 0.9±1.03 per patient), 936 PRISCUS PIM (0.3±0.58) and 4311 EU(7)-PIM (1.4±1.29). The most common FORTA PIM was phenprocoumon (13.8%); the most prevalent PRISCUS PIM was amitriptyline (2.8%); the most common EU(7)-PIM was omeprazole (14.0%). The lists rate PIM differently, with an overall overlap of 6.6%. Increasing use of PIM is significantly associated with reduced cognitive function that was detected with a correlation coefficient of −0.60 for FORTA PIM (p=0.002), −0.72 for PRISCUS PIM (p=0.025) and −0.44 for EU(7)-PIM (p=0.005). Conclusion We identified PIM using FORTA, PRISCUS and EU(7)-PIM lists differently and found that PIM use is associated with cognitive impairment according to LDST, whereby the FORTA list best explained cognitive decline for the German population. These findings are consistent with a negative impact of PIM use on multimorbid elderly patient outcomes.