Refine
Year of publication
Document Type
- Article (16)
- Doctoral Thesis (1)
- Preprint (1)
Has Fulltext
- yes (18)
Is part of the Bibliography
- no (18)
Keywords
- MLL (4)
- acute leukemia (3)
- IKZF1 (2)
- 11q23/MLL rearrangements (1)
- ACLF (1)
- ALL (1)
- AML (1)
- ARID5B (1)
- Acute myeloid leukemia (1)
- Administrative claims data (1)
Objective: To assess the current medical practice in Europe regarding prenatal dexamethasone (Pdex) treatment of congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency.
Design and methods: A questionnaire was designed and distributed, including 17 questions collecting quantitative and qualitative data. Thirty-six medical centres from 14 European countries responded and 30 out of 36 centres were reference centres of the European Reference Network on Rare Endocrine Conditions, EndoERN.
Results: Pdex treatment is currently provided by 36% of the surveyed centres. The treatment is initiated by different specialties, that is paediatricians, endocrinologists, gynaecologists or geneticists. Regarding the starting point of Pdex, 23% stated to initiate therapy at 4–5 weeks postconception (wpc), 31% at 6 wpc and 46 % as early as pregnancy is confirmed and before 7 wpc at the latest. A dose of 20 µg/kg/day is used. Dose distribution among the centres varies from once to thrice daily. Prenatal diagnostics for treated cases are conducted in 72% of the responding centres. Cases treated per country and year vary between 0.5 and 8.25. Registries for long-term follow-up are only available at 46% of the centres that are using Pdex treatment. National registries are only available in Sweden and France.
Conclusions: This study reveals a high international variability and discrepancy in the use of Pdex treatment across Europe. It highlights the importance of a European cooperation initiative for a joint international prospective trial to establish evidence-based guidelines on prenatal diagnostics, treatment and follow-up of pregnancies at risk for CAH.
The use of chemically synthesized short interfering RNAs (siRNAs) is currently the method of choice to manipulate gene expression in mammalian cell culture, yet improvements of siRNA design is expectably required for successful application in vivo. Several studies have aimed at improving siRNA performance through the introduction of chemical modifications but a direct comparison of these results is difficult. We have directly compared the effect of 21 types of chemical modifications on siRNA activity and toxicity in a total of 2160 siRNA duplexes. We demonstrate that siRNA activity is primarily enhanced by favouring the incorporation of the intended antisense strand during RNA-induced silencing complex (RISC) loading by modulation of siRNA thermodynamic asymmetry and engineering of siRNA 3-overhangs. Collectively, our results provide unique insights into the tolerance for chemical modifications and provide a simple guide to successful chemical modification of siRNAs with improved activity, stability and low toxicity.
Background: Abnormalities of 11q23 involving the MLL gene are found in approximately 10% of human leukemias. To date, nearly 100 different chromosome bands have been described in rearrangements involving 11q23 and 64 fusion genes have been cloned and characterized at the molecular level. In this work we present the identification of a novel MLL fusion partner in a pediatric patient with de novo biphenotypic acute leukemia. Methods: Cytogenetics, fluorescence in situ hybridization (FISH), molecular studies (RT-PCR and LDI-PCR), and bioinformatic sequence analysis were used to characterize the CT45A2 gene as novel MLL fusion partner in pediatric acute leukemia. Results: Fluorescence in situ hybridization of the patient G-banded metaphases demonstrated a cryptic insertion of 11q23 in Xq26.3 involving the MLL gene. Breakpoint fusion analysis revealed that a DNA fragment of 653 kb from 11q23, containing MLL exons 1-9 in addition to 16 other 11q23 genes, was inserted into the upstream region of the CT45A2 gene located at Xq26.3. In addition, a deletion at Xq26.3 encompassing the 3' region of the DDX26B gene (exons 9-16) and the entire CT45A1 gene was identified. RNA analysis revealed the presence of a novel MLL-CT45A2 fusion transcript in which the first 9 exons of the MLL gene were fused in-frame to exon 2 of the CT45A2 gene, resulting in a spliced MLL fusion transcript with an intact open reading frame. The resulting chimeric transcript predicts a fusion protein where the N-terminus of MLL is fused to the entire open reading frame of CT45A2. Finally, we demonstrate that all breakpoint regions are rich in long repetitive motifs, namely LINE/L1 and SINE/Alu sequences, but all breakpoints were exclusively identified outside these repetitive DNA sequences. Conclusion: We have identified CT45A2 as a novel spliced MLL fusion partner in a pediatric patient with de novo biphenotypic acute leukemia, as a result of a cryptic insertion of 11q23 in Xq26.3. Since CT45A2 is the first Cancer/Testis antigen family gene found fused with MLL in acute leukemia, future studies addressing its biologic relevance for leukemogenesis are warranted.
Цель: Оценить влияние локализации точки разрыва в геномной ДНК гена MLL на прогноз острых лейкозов (ОЛ) у детей первого года жизни.
Методы: В исследование было включено 68 детей первого года жизни (29 мальчиков и 39 девочек с медианой возраста 4,8 мес.) с MLL-позитивными острым лимфобластным лейкозом (ОЛЛ) (n = 46), острым миелоидным лейкозом (ОМЛ) (n = 20) и ОЛ смешанной линейности (n = 2).
Результаты: 5-летняя бессобытийная выживаемость (БСВ) детей первого года жизни с ОЛЛ, включенных в исследование MLL-Baby, с точкой разрыва в интроне 11 ДНК гена MLL (n = 29) была статистически значимо ниже, чем у пациентов c локализацией точек разрыва, начиная с интрона 7 по экзон 11 (n = 17; 0,16 ± 0,07 и 0,38 ± 0,14; p = 0,039), а кумулятивная вероятность развития рецидива была значительно выше в группе с точкой разрыва в интроне 11 (0,74 ± 0,09 и 0,52 ± 0,17; p = 0,045). В то же время многофакторный анализ показал, что единственным значимым фактором, связанным с неблагоприятным прогнозом, остается сохранение минимальной остаточной болезни (МОБ) в точке наблюдения 4 протокола MLL-Baby (отношение опасности 5,994; 95%-й доверительный интервал 2,209–16,263; p < 0,001). У 22 пациентов с ОМЛ связи между прогнозом и локализацией точки разрыва в ДНК гена MLL не выявлено.
Заключение: Наличие точки разрыва в интроне 11 гена MLL у детей первого года жизни с ОЛЛ, получавших лечение по протоколу MLL-Baby, вело к статистически значимо более низким показателям БСВ и более высокой кумулятивной вероятности развития рецидива. Однако в многофакторной модели риска это нивелировалось сохранением МОБ в точке наблюдения 4. У детей первого года жизни с ОМЛ взаимосвязи между локализацией точки разрыва в ДНК гена MLL и прогнозом не выявлено.
TO THE EDITOR: We read an interesting paper by Palta et al. in a recent issue of the Korean Journal of Hematology titled, "ZBTB16-RARA variant of acute promyelocytic leukemia with tuberculosis: a case report and review of literature" [1]. We would like to add some comments to their article and suggest additional molecular methods to confirm variant translocations in acute promyelocytic leukemia (APL)....
This report describes the clinical courses of two acute myeloid leukemia patients. Both had MLL translocations, the first a t(10;11)(p11.2;q23) with MLL-AF10 and the second a t(11;19)(q23;p13.1) with MLL-ELL fusion. They achieved a clinical remission under conventional chemotherapy but relapsed shortly after end of therapy. Both had a history of invasive mycoses (one had possible pulmonary mycosis, one systemic candidiasis). Because no HLA-identical donor was available, a haploidentical transplantation was performed in both cases. Using a specially designed PCR method for the assessment of minimal residual disease (MRD), based on the quantitative detection of the individual chromosomal breakpoint in the MLL gene, all patients achieved complete and persistent molecular remission after transplantation. The immune reconstitution after transplantation is described in terms of total CD3+/CD4+, CD3+/CD8+, CD19+, and CD16+/CD56+ cell numbers over time. The KIR and HLA genotypes of donors and recipients are reported and the possibility of a KIR-mediated alloreactivity is discussed. This report illustrates that haploidentical transplantation may offer a chance of cure without chronic graft-versus-host disease in situations where no suitable HLA-identical donor is available even in a high-risk setting and shows the value of MRD monitoring in the pre- and posttransplant setting.
Background: Acute leukemia in early age (EAL) is characterized by acquired genetic alterations such as MLL rearrangements (MLL-r). The aim of this case-controlled study was to investigate whether single nucleotide polymorphisms (SNPs) of IKZF1, ARID5B, and CEBPE could be related to the onset of EAL cases (<24 months-old at diagnosis).
Methods: The SNPs (IKZF1 rs11978267, ARID5B rs10821936 and rs10994982, CEBPE rs2239633) were genotyped in 265 cases [169 acute lymphoblastic leukemia (ALL) and 96 acute myeloid leukaemia (AML)] and 505 controls by Taqman allelic discrimination assay. Logistic regression was used to evaluate the association between SNPs of cases and controls, adjusted on skin color and/or age. The risk was determined by calculating odds ratios (ORs) with 95% confidence interval (CI).
Results: Children with the IKZF1 SNP had an increased risk of developing MLL-germline ALL in white children. The heterozygous/mutant genotype in ARID5B rs10994982 significantly increased the risk for MLL-germline leukemia in white and non-white children (OR 2.60, 95% CI: 1.09-6.18 and OR 3.55, 95% CI: 1.57-8.68, respectively). The heterozygous genotype in ARID5B rs10821936 increased the risk for MLL-r leukemia in both white and non-white (OR 2.06, 95% CI: 1.12-3.79 and OR 2.36, 95% CI: 1.09-5.10, respectively). Furthermore, ARID5B rs10821936 conferred increased risk for MLL-MLLT3 positive cases (OR 7.10, 95% CI:1.54-32.68). Our data do not show evidence that CEBPE rs2239633 confers increased genetic susceptibility to EAL.
Conclusions: IKZF1 and CEBPE variants seem to play a minor role in genetic susceptibility to EAL, while ARID5B rs10821936 increased the risk of MLL-MLLT3. This result shows that genetic susceptibility could be associated with the differences regarding MLL breakpoints and partner genes.
IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in both childhood and adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Previously, we revealed that COBL is a hotspot for breakpoints in leukemia and could promote IKZF1 deletions. Through an international collaboration, we provide a detailed genetic and clinical picture of B-ALL with COBL rearrangements (COBL-r). Patients with B-ALL and IKZF1 deletion (n = 133) were included. IKZF1 ∆1-8 were associated with large alterations within chromosome 7: monosomy 7 (18%), isochromosome 7q (10%), 7p loss (19%), and interstitial deletions (53%). The latter included COBL-r, which were found in 12% of the IKZF1 ∆1-8 cohort. Patients with COBL-r are mostly classified as intermediate cytogenetic risk and frequently harbor ETV6, PAX5, CDKN2A/B deletions. Overall, 56% of breakpoints were located within COBL intron 5. Cryptic recombination signal sequence motifs were broadly distributed within the sequence of COBL, and no enrichment for the breakpoint cluster region was found. In summary, a diverse spectrum of alterations characterizes ΔIKZF1 and they also include deletion breakpoints within COBL. We confirmed that COBL is a hotspot associated with ΔIKZF1, but these rearrangements are not driven by RAG-mediated recombination.
Background & Aims: Spontaneous portosystemic shunts (SPSS) frequently develop in liver cirrhosis. Recent data suggested that the presence of a single large SPSS is associated with complications, especially overt hepatic encephalopathy (oHE). However, the presence of >1 SPSS is common. This study evaluates the impact of total cross-sectional SPSS area (TSA) on outcomes in patients with liver cirrhosis.
Methods: In this retrospective international multicentric study, CT scans of 908 cirrhotic patients with SPSS were evaluated for TSA. Clinical and laboratory data were recorded. Each detected SPSS radius was measured and TSA calculated. One-year survival was the primary endpoint and acute decompensation (oHE, variceal bleeding, ascites) was the secondary endpoint.
Results: A total of 301 patients (169 male) were included in the training cohort. Thirty percent of all patients presented with >1 SPSS. A TSA cut-off of 83 mm2 was used to classify patients with small or large TSA (S-/L-TSA). Patients with L-TSA presented with higher model for end-stage liver disease score (11 vs. 14) and more commonly had a history of oHE (12% vs. 21%, p <0.05). During follow-up, patients with L-TSA experienced more oHE episodes (33% vs. 47%, p <0.05) and had lower 1-year survival than those with S-TSA (84% vs. 69%, p <0.001). Multivariate analysis identified L-TSA (hazard ratio 1.66; 95% CI 1.02–2.70, p <0.05) as an independent predictor of mortality. An independent multicentric validation cohort of 607 patients confirmed that patients with L-TSA had lower 1-year survival (77% vs. 64%, p <0.001) and more oHE development (35% vs. 49%, p <0.001) than those with S-TSA.
Conclusion: This study suggests that TSA >83 mm2 increases the risk for oHE and mortality in patients with cirrhosis. Our results support the clinical use of TSA/SPSS for risk stratification and decision-making in the management of patients with cirrhosis.
Lay summary: The prevalence of spontaneous portosystemic shunts (SPSS) is higher in patients with more advanced chronic liver disease. The presence of more than 1 SPSS is common in advanced chronic liver disease and is associated with the development of hepatic encephalopathy. This study shows that total cross-sectional SPSS area (rather than diameter of the single largest SPSS) predicts survival in patients with advanced chronic liver disease. Our results support the clinical use of total cross-sectional SPSS area for risk stratification and decision-making in the management of SPSS.
The KMT2A (MLL) gene rearrangements (KMT2A-r) are associated with a diverse spectrum of acute leukemias. Although most KMT2A-r are restricted to nine partner genes, we have recently revealed that KMT2A-USP2 fusions are often missed during FISH screening of these genetic alterations. Therefore, complementary methods are important for appropriate detection of any KMT2A-r. Here we use a machine learning model to unravel the most appropriate markers for prediction of KMT2A-r in various types of acute leukemia. A Random Forest and LightGBM classifier was trained to predict KMT2A-r in patients with acute leukemia. Our results revealed a set of 20 genes capable of accurately estimating KMT2A-r. The SKIDA1 (AUC: 0.839; CI: 0.799–0.879) and LAMP5 (AUC: 0.746; CI: 0.685–0.806) overexpression were the better markers associated with KMT2A-r compared to CSPG4 (also named NG2; AUC: 0.722; CI: 0.659–0.784), regardless of the type of acute leukemia. Of importance, high expression levels of LAMP5 estimated the occurrence of all KMT2A-USP2 fusions. Also, we performed drug sensitivity analysis using IC50 data from 345 drugs available in the GDSC database to identify which ones could be used to treat KMT2A-r leukemia. We observed that KMT2A-r cell lines were more sensitive to 5-Fluorouracil (5FU), Gemcitabine (both antimetabolite chemotherapy drugs), WHI-P97 (JAK-3 inhibitor), Foretinib (MET/VEGFR inhibitor), SNX-2112 (Hsp90 inhibitor), AZD6482 (PI3Kβ inhibitor), KU-60019 (ATM kinase inhibitor), and Pevonedistat (NEDD8-activating enzyme (NAE) inhibitor). Moreover, IC50 data from analyses of ex-vivo drug sensitivity to small-molecule inhibitors reveals that Foretinib is a promising drug option for AML patients carrying FLT3 activating mutations. Thus, we provide novel and accurate options for the diagnostic screening and therapy of KMT2A-r leukemia, regardless of leukemia subtype.