Refine
Document Type
- Article (6)
- diplomthesis (1)
- Report (1)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- solid-state NMR (2)
- DgkA (1)
- Kinases (1)
- Mechanistic (1)
- Mesoporous silica (1)
- Molecular conformation (1)
- NMR spectroscopy (1)
- Precipitation inhibition (1)
- Solid dispersion (1)
- Solid-state NMR (1)
Die vorliegende geologische Arbeit befaßt sich mit einem Ausschnitt des Taunus. Der Taunus ist der südöstlichste Teil des Rheinischen Schiefergebirges und liegt in etwa zwischen Koblenz, Gießen, Frankfurt und Wiesbaden (Abb. 1 und 2). Marine Flachseesedimente prägen hier das Unterdevon des Rheinischen Schiefergebirges. Durch variszische Deformation entstand überwiegend NW- bis NNW-vergenter Faltenbau. Gravitative Kräfte ließen weitere tektonische Strukturen entstehen. Tertiäre Bruchtektonik schuf Horste und Gräben....... Das bearbeitete Gebiet weist unter großflächigen quartären Schuttdecken unterdevonische Sedimente der Tonschiefer- und Feinsandsteinfraktion auf. Im Unterdevon sorgte rasche Sedimentation bei ständiger Absenkung des Rheinischen Trogs für ein flaches Meer. Im Norden des Kartiergebiets tritt eine Fossilbank mit mariner Fauna zutage. Bei der mesozoisch-tertiären Verwitterung wurden die oberflächennahen Gesteine gelockert und Vererzungen und Roterden gebildet. Taleinschnitte in die tertiäre Rumpffläche sind pleistozänen Alters. Das devonische Gestein ist anchimetamorph überprägt und zeigt eine deutliche erste Schieferung, welche von einer intensiven Glimmerneubildung begleitet ist und primär stark nordwestvergent angelegt wurde. In feinpelitischen Bereichen kann eine zweite, postkristalline Schieferung ausgebildet sein. Durch starken Schuppenbau und anhaltende laterale Einengung bei der variszischen Überprägung entstanden im Taunus sogenannte "horse structures": Es kam zu sukzessiver Aufrichtung hangender Schuppeneinheiten bei nordwestlich fortschreitender Anlage von Überschiebungsbahnen im Liegenden. Im Scheitelbereich eines so entstandenen Vergenzfächers liegt das Kartiergebiet. Achsenflächen und Hauptschieferung stehen steil bis saiger. In diesen Bereichen kam es beim Kollaps des Gebirges durch gravitative Kräfte zur Anlage von Knickbändern. Sie ersetzen Verschiebungsflächen. Vereinzelt sind sie auch mit Abschiebungen verbunden. Die am häufigsten aufgeschlossene Knickband-Schar hat nach SE abschiebenden Charakter, eine zweite zeigt NW-gerichteten Bewegungssinn. Sie sind aufgrund der gleichgerichteten vertikalen Einengung zusammengehörend bzw. konjungiert. Die Knickachsen beider Scharen tauchen mit nur wenigen Grad in Streichrichtung ab. Manchmal sind Knickbänder dieser beiden Gruppen direkt konjungiert aufgeschlossen. Möglicherweise durch Rotation, als Teil konjungierter Knickbänder oder innerhalb größerer übergeordneter Knickbänder erscheinen einige der Knickbänder aufschiebend. Eine untergeordnete, dritte Knickband-Schar deutet mit schrägabschiebendem Verschiebungssinn eine Rotation der Spannungsrichtung und möglicherweise erste Bewegungen der Idsteiner Senke an. Sie ist im Untersuchungsgebiet nur selten aufgeschlossen. Die Untersuchungen im Zuge dieser Diplomarbeit ergaben, daß die Knickbänder bevorzugt in Bereichen südvergenter Schieferung entstanden. Im Süden und südlich des Kartiergebiets weist die Schieferung häufiger Südvergenz auf, weshalb dort fast ausschließlich nach S bis SE abschiebende Knickbänder einzumessen waren. Unterschiede zwischen Messungen im Westen und Osten des Gebiets wurden nicht festgestellt. Ein weiteres Ergebnis dieser Arbeit ist eine Longitudinalstrain-Berechnung von 3,4-6,8 % für die Gesteinspartien mit Knickbändern. Die Anlage der Knickbänder wird als letzte variszische Deformation angesehen. Ihr folgten außer kleineren Abschiebungen möglicherweise noch syn- und antithetische Rotationsbewegungen einzelner Gesteinsschollen. Demnach würden sich insgesamt die Anlage der Knickbänder und die Bildung der Vergenzfächer zeitlich überschneiden. Das Einfallen der Knickachsen und auch anderer Achsen und Lineare flach nach SW, ist wahrscheinlich durch tertiäre Bruchschollentektonik bedingt. Diese Bruchtektonik gliedert das Gebirge in Schollen mit Horsten und Gräben, so z.B. die bedeutende Grabenstruktur der Idsteiner Senke. Dabei kann der Vergenzfächer trotz vertikaler Bewegung horizontal versetzt worden sein. Seine Scheitellinie verändert zur Tiefe hin die Position ("horse structures") und tritt bei einer erodierten Hochscholle versetzt zutage.
The desensitized channelrhodopsin-2 photointermediate contains 13 -cis, 15 -syn retinal Schiff base
(2021)
Channelrhodopsin-2 (ChR2) is a light-gated cation channel and was used to lay the foundations of optogenetics. Its dark state X-ray structure has been determined in 2017 for the wild-type, which is the prototype for all other ChR variants. However, the mechanistic understanding of the channel function is still incomplete in terms of structural changes after photon absorption by the retinal chromophore and in the framework of functional models. Hence, detailed information needs to be collected on the dark state as well as on the different photointermediates. For ChR2 detailed knowledge on the chromophore configuration in the different states is still missing and a consensus has not been achieved. Using DNP-enhanced solid-state MAS NMR spectroscopy on proteoliposome samples, we unambiguously determined the chromophore configuration in the desensitized state, and we show that this state occurs towards the end of the photocycle.
Global response of diacylglycerol kinase towards substrate binding observed by 2D and 3D MAS NMR
(2019)
Escherichia coli diacylglycerol kinase (DGK) is an integral membrane protein, which catalyses the ATP-dependent phosphorylation of diacylglycerol (DAG) to phosphatic acid (PA). It is a unique trimeric enzyme, which does not share sequence homology with typical kinases. It exhibits a notable complexity in structure and function despite of its small size. Here, chemical shift assignment of wild-type DGK within lipid bilayers was carried out based on 3D MAS NMR, utilizing manual and automatic analysis protocols. Upon nucleotide binding, extensive chemical shift perturbations could be observed. These data provide evidence for a symmetric DGK trimer with all of its three active sites concurrently occupied. Additionally, we could detect that the nucleotide substrate induces a substantial conformational change, most likely directing DGK into its catalytic active form. Furthermore, functionally relevant interprotomer interactions are identified by DNP-enhanced MAS NMR in combination with site-directed mutagenesis and functional assays.
Mesoporous silica has emerged as an enabling formulation for poorly soluble active pharmaceutical ingredients (APIs). Unlike other formulations, mesoporous silica typically does not inhibit precipitation of supersaturated API therefore, a suitable precipitation inhibitor (PI) should be added to increase absorption from the gastrointestinal (GI) tract. However, there is limited research about optimal processes for combining PIs with silica formulations. Typically, the PI is added by simply blending the API-loaded silica mechanically with the selected PI. This has the drawback of an additional blending step and may also not be optimal with regard to release of drug and PI. By contrast, loading PI simultaneously with the API onto mesoporous silica, i.e. co-incorporation, is attractive from both a performance and practical perspective. The aim of this study was to demonstrate the utility of a co-incorporation approach for combining PIs with silica formulations, and to develop a mechanistic rationale for improvement of the performance of silica formulations using the co-incorporation approach. The results indicate that co-incorporating HPMCAS with glibenclamide onto silica significantly improved the extent and duration of drug supersaturation in single-medium and transfer dissolution experiments. Extensive spectroscopic characterization of the formulation revealed that the improved performance was related to the formation of drug-polymer interactions already in the solid state; the immobilization of API-loaded silica on HPMCAS plates, which prevents premature release and precipitation of API; and drug-polymer proximity on disintegration of the formulation, allowing for rapid onset of precipitation inhibition. The data suggests that co-incorporating the PI with the API is appealing for silica formulations from both a practical and formulation performance perspective.
Light‐induced activation of biomolecules by uncaging of photolabile protection groups has found many applications for triggering biochemical reactions with minimal perturbations directly within cells. Such an approach might also offer unique advantages for solid‐state NMR experiments on membrane proteins for initiating reactions within or at the membrane directly within the closed MAS rotor. Herein, we demonstrate that the integral membrane protein E. coli diacylglycerol kinase (DgkA), which catalyzes the phosphorylation of diacylglycerol, can be controlled by light under MAS‐NMR conditions. Uncaging of NPE‐ATP or of lipid substrate NPE‐DOG by in situ illumination triggers its enzymatic activity, which can be monitored by real‐time 31P‐MAS NMR. This proof‐of‐concept illustrates that combining MAS‐NMR with uncaging strategies and illumination methods offers new possibilities for controlling biochemical reactions at or within lipid bilayers.
Amorphous formulation technologies to improve oral absorption of poorly soluble active pharmaceutical ingredients (APIs) have become increasingly prevalent. Currently, polymer-based amorphous formulations manufactured by spray drying, hot melt extrusion (HME), or co-precipitation are most common. However, these technologies have challenges in terms of the successful stabilization of poor glass former compounds in the amorphous form. An alternative approach is mesoporous silica, which stabilizes APIs in non-crystalline form via molecular adsorption inside nano-scale pores. In line with these considerations, two poor glass formers, haloperidol and carbamazepine, were formulated as polymer-based solid dispersion via HME and with mesoporous silica, and their stability was compared under accelerated conditions. Changes were monitored over three months with respect to solid-state form and dissolution. The results were supported by solid-state nuclear magnetic resonance spectroscopy (SS-NMR) and scanning electron microscopy (SEM). It was demonstrated that mesoporous silica was more successful than HME in the stabilization of the selected poor glass formers. While both drugs remained non-crystalline during the study using mesoporous silica, polymer-based HME formulations showed recrystallization after one week. Thus, mesoporous silica represents an attractive technology to extend the formulation toolbox to poorly soluble poor glass formers.
Assembling a correctly folded and functional heptahelical membrane protein by protein trans-splicing
(2015)
Protein trans-splicing using split inteins is well established as a useful tool for protein engineering. Here we show, for the first time, that this method can be applied to a membrane protein under native conditions. We provide compelling evidence that the heptahelical proteorhodopsin can be assembled from two separate fragments consisting of helical bundles A and B and C, D, E, F, and G via a splicing site located in the BC loop. The procedure presented here is on the basis of dual expression and ligation in vivo. Global fold, stability, and photodynamics were analyzed in detergent by CD, stationary, as well as time-resolved optical spectroscopy. The fold within lipid bilayers has been probed by high field and dynamic nuclear polarization-enhanced solid-state NMR utilizing a (13)C-labeled retinal cofactor and extensively (13)C-(15)N-labeled protein. Our data show unambiguously that the ligation product is identical to its non-ligated counterpart. Furthermore, our data highlight the effects of BC loop modifications onto the photocycle kinetics of proteorhodopsin. Our data demonstrate that a correctly folded and functionally intact protein can be produced in this artificial way. Our findings are of high relevance for a general understanding of the assembly of membrane proteins for elucidating intramolecular interactions, and they offer the possibility of developing novel labeling schemes for spectroscopic applications.
Structural and functional consequences of the H180A mutation of the light-driven sodium pump KR2
(2022)
Krokinobacter eikastus rhodopsin 2 (KR2) is a light-driven pentameric sodium pump. Its ability to translocate cations other than protons and to create an electrochemical potential makes it an attractive optogenetic tool. Tailoring its ion pumping characteristics by mutations is therefore of great interest. In addition, understanding the functional and structural consequences of certain mutations helps to derive a functional mechanism of ion selectivity and transfer of KR2. Based on solid-state NMR spectroscopy, we report an extensive chemical shift resonance assignment of KR2 within lipid bilayers. This data set was then used to probe site-resolved allosteric effects of sodium binding, which revealed multiple responsive sites including the Schiff base nitrogen and the NDQ motif. Based on this data set, the consequences of the H180A mutation are probed. The mutant is silenced in the presence of sodium while in its absence, proton pumping is observed. Our data reveal specific long-range effects along the sodium transfer pathway. These experiments are complemented by time-resolved optical spectroscopy. Our data suggest a model in which sodium uptake by the mutant can still take place, while sodium release and backflow control are disturbed.