Refine
Year of publication
Document Type
- Article (15)
- Bachelor Thesis (1)
- Doctoral Thesis (1)
- Master's Thesis (1)
- Preprint (1)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n_TOF will be presented.
The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n_TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT).
The Cosmological Lithium Problem refers to the large discrepancy between the abundance of primordial 7Li predicted by the standard theory of Big Bang Nucleosynthesis and the value inferred from the so-called “Spite plateau” in halo stars. A possible explanation for this longstanding puzzle in Nuclear Astrophysics is related to the incorrect estimation of the destruction rate of 7Be, which is responsible for the production of 95% of primordial Lithium. While charged-particle induced reactions have mostly been ruled out, data on the 7Be(n,α) and 7Be(n,p) reactions are scarce or completely missing, so that a large uncertainty still affects the abundance of 7Li predicted by the standard theory of Big Bang Nucleosynthesis. Both reactions have been measured at the n_TOF facility at CERN, providing for the first time data in a wide neutron energy range.
he study of the resonant structures in neutron-nucleus cross-sections, and therefore of the compound-nucleus reaction mechanism, requires spectroscopic measurements to determine with high accuracy the energy of the neutron interacting with the material under study.
To this purpose, the neutron time-of-flight facility n_TOF has been operating since 2001 at CERN. Its characteristics, such as the high intensity instantaneous neutron flux, the wide energy range from thermal to few GeV, and the very good energy resolution, are perfectly suited to perform high-quality measurements of neutron-induced reaction cross sections. The precise and accurate knowledge of these cross sections plays a fundamental role in nuclear technologies, nuclear astrophysics and nuclear physics.
Two different measuring stations are available at the n_TOF facility, called EAR1 and EAR2, with different characteristics of intensity of the neutron flux and energy resolution. These experimental areas, combined with advanced detection systems lead to a great flexibility in performing challenging measurement of high precision and accuracy, and allow the investigation isotopes with very low cross sections, or available only in small quantities, or with very high specific activity.
The characteristics and performances of the two experimental areas of the n_TOF facility will be presented, together with the most important measurements performed to date and their physics case. In addition, the significant upcoming measurements will be introduced.
The design and operation of innovative nuclear systems requires a better knowledge of the capture and fission cross sections of the Pu isotopes. For the case of capture on 242Pu, a reduction of the uncertainty in the fast region down to 8-12% is required. Moreover, aiming at improving the evaluation of the fast energy range in terms of average parameters, the OECD NEA High Priority Request List (HPRL) requests high-resolution capture measurements with improved accuracy below 2 keV. The current uncertainties also affect the thermal point, where previous experiments deviate from each other by 20%. A fruitful collaboration betwen JGU Mainz and HZ Dresden-Rossendorf within the EC CHANDA project resulted in a 242Pu sample consisting of a stack of seven fission-like targets making a total of 95(4) mg of 242Pu electrodeposited on thin (11.5 μm) aluminum backings. This contribution presents the results of a set of measurements of the 242Pu(n, γ) cross section from thermal to 500 keV combining different neutron beams and techniques. The thermal point was determined at the Budapest Research Reactor by means of Neutron Activation Analysis and Prompt Gamma Analysis, and the resolved (1 eV - 4 keV) and unresolved (1 - 500 keV) resonance regions were measured using a set of four Total Energy detectors at the CERN n_TOF-EAR1.
The experimental area 2 (EAR-2) at CERNs neutron time-of-flight facility (n_TOF), which is operational since 2014, is designed and built as a short-distance complement to the experimental area 1 (EAR-1). The Parallel Plate Avalanche Counter (PPAC) monitor experiment was performed to characterize the beam pro↓le and the shape of the neutron 'ux at EAR-2. The prompt γ-flash which is used for calibrating the time-of-flight at EAR-1 is not seen by PPAC at EAR-2, shedding light on the physical origin of this γ-flash.
Diese Arbeit beschäftigt sich mit der Charakterisierung des 4π-Bariumfluorid(BaF2)-Detektors, der in Zukunft im Rahmen des FRANZ-Projektes (Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum) eingesetzt werden soll. Der Detektor soll zum Nachweis von γ-Emission zum Beispiel nach einem Neutroneneinfang genutzt werden, womit der (n,γ)-Wirkungsquerschnitt bestimmt werden kann. Hauptaufgabe dieser Arbeit ist die Bestimmung der Energie- und Zeitauflösung, sowie die Energie- und Zeitkalibrierung und die Effizienzbestimmung.
Im Weltall existieren hunderte sehr helle Objekte, die eine hohe konstante Leuchtkraft im Wellenlängenbereich von Gammastrahlung besitzen. Die konstante Leuchtkraft mancher dieser Objekte wird in regelmäßigen Abständen von starken Ausbrüchen, den sogenannten X-Ray-Bursts, unterbrochen. Hauptenergiequelle dieser X-RayBursts ist der „rapid-proton-capture“-Prozess (rp-Prozess). Dieser zeichnet sich durch eine Abfolge von (p,γ)-Reaktionen und β+-Zerfällen aus, die die charakteristischen Lichtkurven produzieren. Für viele am Prozess beteiligte Reaktionen ist der Q-Wert sehr klein, wodurch die Rate der einzelnen Reaktionen von den resonanten Einfängen in die ungebundenen Zustände dominiert wird. Die Unsicherheiten in der Beschreibung der Lichtkurve sind derzeit aufgrund fehlender kernphysikalischer Informationen von vielen am Prozess beteiligten Isotopen sehr groß. Sensitivitätsstudien zeigen, dass dabei die Unsicherheiten der 23Al(p,γ)24Si-Reaktion eine der größten Auswirkungen auf die Lichtkurve hat. Diese werden durch ungenaue und widersprüchliche Informationen zu den ungebundenen Zuständen im kurzlebigen 24Si hervorgerufen.
Um Informationen über die Kernstruktur von 24Si zu erhalten, wurde am National Superconducting Cyclotron Laboratory (NSCL), Michigan, USA, die 23Al(d,n)24Si Transferreaktion untersucht. Der in dieser Form erstmals umgesetzte Versuchsaufbau bestand aus einem Gammadetektor zur Messung der Übergangsenergien des produzierten 24Si, einem Neutronendetektor zur Messung der Winkelverteilung der emittierten Neutronen und einem Massensprektrometer zur Identifikation des produzierten Isotops. Mit diesem Aufbau, der eine Detektion der kompletten Kinematik der (d,nγ)-Reaktion ermöglichte, konnten folgende Erkentnisse gewonnen werden:
Aus der Energie der nachgewiesenen Gammas konnten die Übergänge zwischen den Kernniveaus von 24Si bestimmt und daraus die Energien der einzelnen Zustände ermittelt werden. Dabei konnte neben dem bereits bekannten gebundenen 2+-Zustand (in dieser Arbeit gemessen bei 1874 ± 2,9keV) und dem ungebundenen 2+-Zustand (3448,8 ± 4,6keV), erstmals ein weiterer ungebundener (4+,0+)-Zustand bei 3470,6 ± 6,2 keV beobachtet werden. Zusätzlich konnte die Diskrepanz, die bezüglich der Energie des ungebundenen 2+-Zustands aufgrund früherer Messungen bestand, beseitigt und die Energieunsicherheit reduziert werden.
Aus der Anzahl der nachgewiesenen Gammas konnten ebenfalls die (d,n)-Wirkungsquerschnitte in die einzelnen Zustände von 24Si bestimmt werden. Unter Verwendung der Ergebnisse von DWBA-Rechnungen konnte mithilfe dieser die spektroskopischen Faktoren berechnet werden. Für die angeregten Zustände musste dabei zwischen verschiedenen Drehimpulsüberträgen unterschieden werden. Mittels der Winkelverteilung der nachgewiesenen Neutronen konnte gezeigt werden, dass die Gewichtung anhand der theoretischen spektroskopischen Faktoren zur Berechnung der Anteile des jeweiligen Drehimpulsübertrags am gesamten Wirkungsquerschnitt für den entsprechenden Zustand gute Ergebnisse liefert. Für eine quantitative Bestimmung der spektroskopischen Faktoren der Zustände anhand der Neutronenwinkelverteilungen in 24Si war allerdings die Statistik zu gering. Für den Fall der deutlich häufiger beobachteten 22Mg(d,n)23Al-Reaktion konnte hingegen ein spektroskopischer Faktor für den 23Al-Grundzustand von 0,29 ± 0,04 bestimmt werden. Abschließend wurden die Auswirkungen der gewonnenen Erkenntnisse zur Kernstruktur von 24Si auf die Rate der 23Al(p,γ)-Reaktion untersucht. Dabei konnte aufgrund der besseren Energiebestimmung zum einen die Diskrepanz zwischen den Raten die auf Grundlage der beiden früheren Untersuchungen berechnet wurden und bis zu einem Faktor von 20 voneinander abweichen, beseitigt werden. Zum anderen konnte aufgrund der kleineren Unsicherheit in der Energiebestimmung der Fehlerbereich der Rate verkleinert werden. Die Untersuchungen zeigen, dass die Unsicherheit in der neuen Rate von der Ungenauigkeit der Massenbestimmung der beiden beteiligten Isotope und damit dem Q-Wert der Reaktion dominiert wird. Durch eine bessere Bestimmung des Q-Werts könnte die Unsicherheit in der Rate aufgrund der neuen experimentellen Ergebnisse auf ein Zehntel gesenkt werden.