Refine
Document Type
- Conference Proceeding (5)
- Article (3)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Institute
- Physik (8)
We show the first results for parton distribution functions within the proton at the physical pion mass, employing the method of quasi-distributions. In particular, we present the matrix elements for the iso-vector combination of the unpolarized, helicity and transversity quasi-distributions, obtained with Nf = 2 twisted mass cloverimproved fermions and a proton boosted with momentum = 0.83 GeV. The momentum smearing technique has been applied to improve the overlap with the proton boosted state. Moreover, we present the renormalized helicity matrix elements in the RI’ scheme, following the non-perturbative renormalization prescription recently developed by our group.
We study the light scalar mesons a_0(980) and kappa using N_f = 2+1+1 flavor lattice QCD. In order to probe the internal structure of these scalar mesons, and in particular to identify, whether a sizeable tetraquark component is present, we use a large set of operators, including diquark-antidiquark, mesonic molecule and two-meson operators. The inclusion of disconnected diagrams, which are technically rather challenging, but which would allow us to extend our work to e.g. the f_0(980) meson, is introduced and discussed.
It is a long discussed issue whether light scalar mesons have sizeable four-quark components. We present an exploratory study of this question using Nf = 2+1+1 twisted mass lattice QCD. A mixed action approach ignoring disconnected contributions is used to calculate correlatormatrices consisting of mesonic molecule, diquark-antidiquark and two-meson interpolating operators with quantum numbers of the scalar mesons a0(980) (1(0++)) and k (1/2(0+)). The correlation matrices are analyzed by solving the generalized eigenvalue problem. The theoretically expected free two-particle scattering states are identified, while no additional low lying states are observed. We do not observe indications for bound four-quark states in the channels investigated.
In this work we present, for the first time, the non-perturbative renormalization for the unpolarized, helicity and transversity quasi-PDFs, in an RI′ scheme. The proposed prescription addresses simultaneously all aspects of renormalization: logarithmic divergences, finite renormalization as well as the linear divergence which is present in the matrix elements of fermion operators with Wilson lines. Furthermore, for the case of the unpolarized quasi-PDF, we describe how to eliminate the unwanted mixing with the twist-3 scalar operator.
We utilize perturbation theory for the one-loop conversion factor that brings the renormalization functions to the MS-scheme at a scale of 2 GeV. We also explain how to improve the estimates on the renormalization functions by eliminating lattice artifacts. The latter can be computed in one-loop perturbation theory and to all orders in the lattice spacing.
We apply the methodology for the renormalization to an ensemble of twisted mass fermions with Nf = 2 + 1 + 1 dynamical quarks, and a pion mass of around 375 MeV.
We present our recent results on antiheavy-antiheavy-light-light tetraquark systems using lattice QCD. Our study of the b¯b¯us four-quark system with quantum numbers JP=1+ and the b¯c¯ud four-quark systems with I(JP)=0(0+) and I(JP)=0(1+) utilizes scattering operators at the sink to improve the extraction of the low-lying energy levels. We found a bound state for b¯b¯us with Ebind,b¯b¯us=(−86±22±10)MeV, but no indication for a bound state in both b¯c¯ud channels. Moreover, we show preliminary results for b¯b¯ud with I(JP)=0(1+), where we used scattering operators both at the sink and the source. We found a bound state and determined its infinite-volume binding energy with a scattering analysis, resulting in Ebind,b¯b¯ud=(−103±8)MeV.
We discuss the current developments by the European Twisted Mass Collaboration in extracting parton distribution functions from the quasi-PDF approach. We concentrate on the non-perturbative renormalization prescription recently developed by us, using the RI′ scheme. We show results for the renormalization functions of matrix elements needed for the computation of quasi-PDFs, including the conversion to the MS scheme, and for renormalized matrix elements. We discuss the systematic effects present in the Z-factors and the possible ways of addressing them in the future.
We present first results of a recently started lattice QCD investigation of antiheavy-antiheavy-light-light tetraquark systems including scattering interpolating operators in correlation functions both at the source and at the sink. In particular, we discuss the importance of such scattering interpolating operators for a precise computation of the low-lying energy levels. We focus on the b¯b¯ud four-quark system with quantum numbers I(JP)=0(1+), which has a ground state below the lowest meson-meson threshold. We carry out a scattering analysis using Lüscher's method to extrapolate the binding energy of the corresponding QCD-stable tetraquark to infinite spatial volume. Our calculation uses clover u, d valence quarks and NRQCD b valence quarks on gauge-link ensembles with HISQ sea quarks that were generated by the MILC collaboration.
We present our recent results on antiheavy-antiheavy-light-light tetraquark systems using lattice QCD. Our study of the b¯b¯us four-quark system with quantum numbers JP=1+ and the b¯c¯ud four-quark systems with I(JP)=0(0+) and I(JP)=0(1+) utilizes scattering operators at the sink to improve the extraction of the low-lying energy levels. We found a bound state for b¯b¯us with Ebind,b¯b¯us=(−86±22±10)MeV, but no indication for a bound state in both b¯c¯ud channels. Moreover, we show preliminary results for b¯b¯ud with I(JP)=0(1+), where we used scattering operators both at the sink and the source. We found a bound state and determined its infinite-volume binding energy with a scattering analysis, resulting in Ebind,b¯b¯ud=(−103±8)MeV.