Refine
Document Type
- Article (2)
- Working Paper (1)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Causal Machine Learning (1)
- Core-component reuse (1)
- Enriched Digital Footprint (1)
- Green Nudging (1)
- Location-based games (1)
- Mobile games (1)
- Product life cycle (1)
- Product returns (1)
The mobile games business is an ever-increasing sub-sector of the entertainment industry. Due to its high profitability but also high risk and competitive atmosphere, game publishers need to develop strategies that allow them to release new products at a high rate, but without compromising the already short lifespan of the firms' existing games. Successful game publishers must enlarge their user base by continually releasing new and entertaining games, while simultaneously motivating the current user base of existing games to remain active for more extended periods. Since the core-component reuse strategy has proven successful in other software products, this study investigates the advantages and drawbacks of this strategy in mobile games. Drawing on the widely accepted Product Life Cycle concept, the study investigates whether the introduction of a new mobile game built with core-components of an existing mobile game curtails the incumbent's product life cycle. Based on real and granular data on the gaming activity of a popular mobile game, the authors find that by promoting multi-homing (i.e., by smartly interlinking the incumbent and new product with each other so that users start consuming both games in parallel), the core-component reuse strategy can prolong the lifespan of the incumbent game.
With free delivery of products virtually being a standard in E-commerce, product returns pose a major challenge for online retailers and society. For retailers, product returns involve significant transportation, labor, disposal, and administrative costs. From a societal perspective, product returns contribute to greenhouse gas emissions and packaging disposal and are often a waste of natural resources. Therefore, reducing product returns has become a key challenge. This paper develops and validates a novel smart green nudging approach to tackle the problem of product returns during customers’ online shopping processes. We combine a green nudge with a novel data enrichment strategy and a modern causal machine learning method. We first run a large-scale randomized field experiment in the online shop of a German fashion retailer to test the efficacy of a novel green nudge. Subsequently, we fuse the data from about 50,000 customers with publicly-available aggregate data to create what we call enriched digital footprints and train a causal machine learning system capable of optimizing the administration of the green nudge. We report two main findings: First, our field study shows that the large-scale deployment of a simple, low-cost green nudge can significantly reduce product returns while increasing retailer profits. Second, we show how a causal machine learning system trained on the enriched digital footprint can amplify the effectiveness of the green nudge by “smartly” administering it only to certain types of customers. Overall, this paper demonstrates how combining a low-cost marketing instrument, a privacy-preserving data enrichment strategy, and a causal machine learning method can create a win-win situation from both an environmental and economic perspective by simultaneously reducing product returns and increasing retailers’ profits.