Refine
Year of publication
Language
- English (113)
Has Fulltext
- yes (113)
Is part of the Bibliography
- no (113)
Keywords
- BESIII (10)
- Branching fractions (3)
- Hadronic decays (3)
- Absolute branching fraction (2)
- Charmonium (2)
- Cross section (2)
- decays (2)
- luminosity (2)
- Angular distribution (1)
- Annihilation (1)
Institute
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 20 times larger than that of χc2→ρ(770)±π∓, which implies the effects are largely due to U-spin symmetry breaking, rather than just isospin symmetry breaking in charmonium decays.
Using a low background data sample of 9.7×105 𝐽/𝜓→𝛾𝜂′, 𝜂′→𝛾𝜋+𝜋− events, which are 2 orders of magnitude larger than those from the previous experiments, recorded with the BESIII detector at BEPCII, the decay dynamics of 𝜂′→𝛾𝜋+𝜋− are studied with both model-dependent and model-independent approaches. The contributions of 𝜔 and the 𝜌(770)−𝜔 interference are observed for the first time in the decays 𝜂′→𝛾𝜋+𝜋− in both approaches. Additionally, a contribution from the box anomaly or the 𝜌(1450) resonance is required in the model-dependent approach, while the process specific part of the decay amplitude is determined in the model-independent approach.
To study the nature of the state Y (2175), a dedicated data set of e+e− collision data was collected at the center-of-mass energy of 2.125 GeV with the BESIII detector at the BEPCII collider. By analyzing large-angle Bhabha scattering events, the integrated luminosity of this data set is determined to be 108.49±0.02±0.85 pb−1, where the first uncertainty is statistical and the second one is systematic. In addition, the center-of-mass energy of the data set is determined with radiative dimuon events to be 2126.55±0.03±0.85 MeV, where the first uncertainty is statistical and the second one is systematic.
We report on new measurements of Cabibbo-suppressed semileptonic D+s decays using 3.19 fb−1 of e+e− annihilation data sample collected at a center-of-mass energy of 4.178~GeV with the BESIII detector at the BEPCII collider. Our results include branching fractions B(D+s→K0e+νe)=(3.25±0.38(stat.)±0.16(syst.))×10−3 and B(D+s→K∗0e+νe)=(2.37±0.26(stat.)±0.20(syst.))×10−3 which are much improved relative to previous measurements, and the first measurements of the hadronic form-factor parameters for these decays. For D+s→K0e+νe, we obtain f+(0)=0.720±0.084(stat.)±0.013(syst.), and for D+s→K∗0e+νe, we find form-factor ratios rV=V(0)/A1(0)=1.67±0.34(stat.)±0.16(syst.) and r2=A2(0)/A1(0)=0.77±0.28(stat.)±0.07(syst.).
Using a data sample of 448.1×106 𝜓(3686) events collected at √𝑠=3.686 GeV with the BESIII detector at the Beijing Electron-Positron Collider II, we search for the rare decay 𝐽/𝜓→𝜙𝑒+𝑒− via 𝜓(3686)→𝜋+𝜋−𝐽/𝜓. No signal events are observed and the upper limit on the branching fraction is set to be ℬ(𝐽/𝜓→𝜙𝑒+𝑒−)<1.2×10−7 at the 90% confidence level, which is still about one order of magnitude higher than the Standard Model prediction.
Using a data sample of 448.1×106 ψ(3686) events collected at s√= 3.686 GeV with the BESIII detector at the BEPCII, we search for the rare decay J/ψ→ϕe+e− via ψ(3686)→π+π−J/ψ. No signal events are observed and the upper limit on the branching fraction is set to be B(J/ψ→ϕe+e−)<1.2×10−7 at the 90\% confidence level, which is still about one order of magnitude higher than the Standard Model prediction.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 10 times larger than the upper limit of χc2→ρ(770)±π∓, which is so far the first direct observation of a significant U-spin symmetry breaking effect in charmonium decays.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 20 times larger than that of χc2→ρ(770)±π∓, which implies the effects are largely due to U-spin symmetry breaking, rather than just isospin symmetry breaking in charmonium decays.
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 10 times larger than the upper limit of χc2→ρ(770)±π∓, which is so far the first direct observation of a significant U-spin symmetry breaking effect in charmonium decays.
We report new measurements of the cross sections for the production of Dbar D final states at the ψ(3770) resonance. Our data sample consists of an integrated luminosity of 2.93 fb−1 of e+e− annihilation data produced by the BEPCII collider and collected and analyzed with the BESIII detector. We exclusively reconstruct three D0 and six D+ hadronic decay modes and use the ratio of the yield of fully reconstructed Dbar D events ("double tags") to the yield of all reconstructed D or bar D mesons ("single tags") to determine the number of D0bar D0 and D+D− events, benefiting from the cancellation of many systematic uncertainties. Combining these yields with an independent determination of the integrated luminosity of the data sample, we find the cross sections to be σ(e+e− → D0bar D0) nb and σ(e+e− → D+D−) = (2.830 ± 0.011 ± 0.026) nb, where the uncertainties are statistical and systematic, respectively.