Refine
Document Type
- Bachelor Thesis (1)
- Part of a Book (1)
Language
- German (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Architekturen (1)
- DDC (1)
- Dewey Decimal Classification (1)
- Forschungswerkzeuge (1)
- Interoperabilität (1)
- Machine Learning (1)
- Texttechnologie (1)
- Themenklassifikation (1)
Institute
- Informatik (1)
- Informatik und Mathematik (1)
In diesem Beitrag untersuchen wir Entwicklungstendenzen von Infrastrukturen in den Digitalen Geisteswissenschaften. Wir argumentieren, dass infolge (1) der Verfügbarkeit von immer mehr Daten über sozial-semiotische Netzwerke, (2) der Methodeninflation in geisteswissenschaftlichen Disziplinen, (3) der zunehmend hybriden Arbeitsteilung zwischen Mensch und Maschine und (4) der explosionsartigen Vermehrung künstlicher Texte ein erheblicher Anpassungsdruck auf die Weiterentwicklung solcher Infrastrukturen entstanden ist. In diesem Zusammenhang beschreiben wir drei Informationssysteme, die sich unter anderem durch die Interaktionsmöglichkeiten unterscheiden, die sie ihren Nutzern bieten, um solchen Herausforderungen zu begegnen. Dabei skizzieren wir mit VienNA eine neuartige Architektur solcher Systeme, welche aufgrund ihrer Flexibilität die Möglichkeit bieten könnte, letztere Herausforderungen zu bewältigen.
Diese Bachelorarbeit befasst sich mit der Themenklassifikation von unstrukturiertem Text. Aufgrund der stetig steigenden Menge von textbasierten Daten werden automatisierte Klassifikationsmethoden in vielen Disziplinen benötigt und erforscht. Aufbauend auf dem text2ddc-Klassifikator, der am Text Technology Lab der Goethe-Universität Frankfurt am Main entwickelt wurde, werden die Auswirkungen der Vergrößerung des Trainingskorpus mittels unterschiedlicher Methoden untersucht. text2ddc nutzt die Dewey Decimal Classification (DDC) als Zielklassifikation und wird trainiert auf Artikeln der Wikipedia. Nach einer Einführung, in der Grundlagen beschrieben werden, wird das Klassifikationsmodell von text2ddc vorgestellt, sowie die Probleme und daraus resultierenden Aufgaben betrachtet. Danach wird die Aktualisierung der bisherigen Daten beschrieben, gefolgt von der Vorstellung der verschiedenen Methoden, das Trainingskorpus zu erweitern. Mit insgesamt elf Sprachen wird experimentiert. Die Evaluation zeigt abschließend die Verbesserungen der Qualität der Klassifikation mit text2ddc auf, diskutiert die problematischen Fälle und gibt Anregungen für weitere zukünftige Arbeiten.