Refine
Year of publication
Document Type
- Article (8)
- Part of Periodical (5)
- Preprint (1)
Language
- English (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- Primitive weevils (2)
- Pyrochroidae (2)
- faunal survey (2)
- new genus (2)
- Bipolar disorder (1)
- Circadian (1)
- India (1)
- Indonesia (1)
- Ischalia (Ischalia) montana (1)
- Ischaliidae (1)
Institute
- Geowissenschaften / Geographie (2)
- Physik (2)
- Medizin (1)
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Background: Bipolar disorder is associated with circadian disruption and a high risk of suicidal behavior. In a previous exploratory study of patients with bipolar I disorder, we found that a history of suicide attempts was associated with differences between winter and summer levels of solar insolation. The purpose of this study was to confirm this finding using international data from 42% more collection sites and 25% more countries. Methods: Data analyzed were from 71 prior and new collection sites in 40 countries at a wide range of latitudes. The analysis included 4876 patients with bipolar I disorder, 45% more data than previously analyzed. Of the patients, 1496 (30.7%) had a history of suicide attempt. Solar insolation data, the amount of the sun’s electromagnetic energy striking the surface of the earth, was obtained for each onset location (479 locations in 64 countries). Results: This analysis confirmed the results of the exploratory study with the same best model and slightly better statistical significance. There was a significant inverse association between a history of suicide attempts and the ratio of mean winter insolation to mean summer insolation (mean winter insolation/mean summer insolation). This ratio is largest near the equator which has little change in solar insolation over the year, and smallest near the poles where the winter insolation is very small compared to the summer insolation. Other variables in the model associated with an increased risk of suicide attempts were a history of alcohol or substance abuse, female gender, and younger birth cohort. The winter/summer insolation ratio was also replaced with the ratio of minimum mean monthly insolation to the maximum mean monthly insolation to accommodate insolation patterns in the tropics, and nearly identical results were found. All estimated coefficients were significant at p < 0.01. Conclusion: A large change in solar insolation, both between winter and summer and between the minimum and maximum monthly values, may increase the risk of suicide attempts in bipolar I disorder. With frequent circadian rhythm dysfunction and suicidal behavior in bipolar disorder, greater understanding of the optimal roles of daylight and electric lighting in circadian entrainment is needed.
National greenhouse gas inventories (GHGIs) are submitted annually to the United Nations Framework Convention on Climate Change (UNFCCC). They are estimated in compliance with Intergovernmental Panel on Climate Change (IPCC) methodological guidance using activity data, emission factors and facility-level measurements. For some sources, the outputs from these calculations are very uncertain. Inverse modelling techniques that use high-quality, long-term measurements of atmospheric gases have been developed to provide independent verification of national GHGIs. This is considered good practice by the IPCC as it helps national inventory compilers to verify reported emissions and to reduce emission uncertainty. Emission estimates from the InTEM (Inversion Technique for Emission Modelling) model are presented for the UK for the hydrofluorocarbons (HFCs) reported to the UNFCCC (HFC-125, HFC-134a, HFC-143a, HFC-152a, HFC-23, HFC-32, HFC-227ea, HFC-245fa, HFC-43-10mee and HFC-365mfc). These HFCs have high global warming potentials (GWPs), and the global background mole fractions of all but two are increasing, thus highlighting their relevance to the climate and a need for increasing the accuracy of emission estimation for regulatory purposes. This study presents evidence that the long-term annual increase in growth of HFC-134a has stopped and is now decreasing. For HFC-32 there is an early indication, its rapid global growth period has ended, and there is evidence that the annual increase in global growth for HFC-125 has slowed from 2018. The inverse modelling results indicate that the UK implementation of European Union regulation of HFC emissions has been successful in initiating a decline in UK emissions from 2018. Comparison of the total InTEM UK HFC emissions in 2020 with the average from 2009–2012 shows a drop of 35 %, indicating progress toward the target of a 79 % decrease in sales by 2030. The total InTEM HFC emission estimates (2008–2018) are on average 73 (62–83) % of, or 4.3 (2.7–5.9) Tg CO2-eq yr−1 lower than, the total HFC emission estimates from the UK GHGI. There are also significant discrepancies between the two estimates for the individual HFCs.
National Greenhouse Gas Inventories (GHGI) are submitted annually to the United Nations Framework Convention on Climate Change (UNFCCC). They are estimated in compliance with Intergovernmental Panel on Climate Change (IPCC) methodological guidance using activity data, emission factors and facility-level measurements. For some sources, the outputs from these calculations are very uncertain. Inverse modelling techniques that use high-quality, long-term measurements of atmospheric gases have been developed to provide independent verification of national GHGI. This is considered good practice by the IPCC as it helps national inventory compilers to verify reported emissions and to reduce emission uncertainty. Emission estimates from the InTEM (Inversion Technique for Emissions Modelling) model are presented for the UK for the hydrofluorocarbons (HFCs) reported to the UNFCCC (HFC-125, HFC-134a, HFC-143a, HFC-152a, HFC-23, HFC-32, HFC-227ea, HFC-245fa, HFC-43-10mee and HFC-365mfc). These HFCs have high Global Warming Potentials (GWPs) and the global background mole fractions of all but two are increasing, thus highlighting their relevance to the climate and a need for increasing the accuracy of emission estimation for regulatory purposes. This study presents evidence that the long-term annual increase in growth of HFC-134a has stopped and is now decreasing. For HFC-32 there is an early indication its rapid global growth period has ended, and there is evidence that the annual increase in global growth for HFC-125 has slowed from 2018. The inverse modelling results indicate that the UK implementation of European Union regulation of HFC emissions has been successful in initiating a decline in UK emissions in the since 2018. Comparison of the total InTEM UK HFC emissions in 2020 with the average from 2009–2012 shows a drop of 35%, indicating progress toward the target of a 79% decrease in sales by 2030. The total InTEM HFC emission estimates (2008–2018) are on average 73 (62–83)% of, or 4.3 (2.7–5.9) Tg CO2-eq yr−1 lower than, the total HFC emission estimates from the UK GHGI inventory. There are also significant discrepancies between the two estimates for the individual HFCs.
Sundapyrochroa, a new genus of pyrochroine Pyrochroidae, is described from three Sunda Shelf species most recently assigned to Pseudopyrochroa Pic: Sundapyrochroa atricolor (Pic), comb. nov., recorded from Peninsular Malaysia, Sundapyrochroa nigripennis (Pic), comb. nov., recorded from Peninsular Malaysia, and Sundapyrochroa sumatrensis (Pic), comb. nov., recorded from Borneo (Malaysia: Sabah) and Sumatra (Indonesia). Schizotus rotundicollis Pic, syn. nov., is proposed as a junior synonym of S. sumatrensis. No evidence could be found to support subspecifi c categories for S. nigripennis, thus, Pseudopyrochroa nigripennis notaticeps Pic, syn. nov., is proposed as a junior synonym of S. nigripennis. Gross anatomy of the cranium (female, male), antennae (female, male), and genitalia (male) are both diagnostic and enigmatic, suggesting no clear relationships with other pyrochroine genera.
Pyroghatsiana, a new genus of pyrochroine Pyrochroidae is described from the Southern Ghats of the Indian continental southern tip. The only known specimen is a female, Pyroghatsiana madurensis (Pic), new combination, originally placed in Dendroides Latreille, and subsequently transferred to Pseudodendroides Blair. Several striking differences including the dorsal interocular width between the compound eyes, shape and length of the third antennal segment, and shape of the pronotum preclude placement of Pyroghatsiana in either Dendroides, Pseudodendroides, or any other existing pyrochroine genus.
A statewide survey of Wisconsin’s Nemonychidae and Anthribidae (Coleoptera: Curculionoidea) was conducted over one full (2012) and two partial (2011, 2013) fi eld seasons. Specimens were collected using a variety of techniques. Two species of the nemonychid genus Cimberis and 22 species of Anthribidae in 13 genera are now confi rmed. Generic and species-level keys for Wisconsin species are provided along with generic and species diagnoses. Species treatments also include a synonymy, a description, and information on natural history, phenology, distribution and collecting methods. Dorsal and lateral habitus images are also provided for most of the species.
A survey of Wisconsin Scarabaeoidea (Coleoptera) conducted from literature searches, collection inventories, and three years offield work (1997-1999), yielded 177 species representing nine families, two of which, Ochodaeidae and Ceratocanthidae, represent new state family records. Fifty-six species (32% of the Wisconsin fauna) represent new state species records, having not previously been recorded from the state. Literature and collection distributional records suggest the potential for at least 33 additional species to occur in Wisconsin.
A survey of Wisconsin Nitidulidae and Kateretidae yielded 78 species through analysis of literature records, museum and private collections, and three years of field research (2000-2002). Twenty-seven species (35% of the Wisconsin fauna) represent new state records, having never been previously recorded from the state. Wisconsin distribution, along with relevant collecting techniques and natural history information, are summarized. The Wisconsin nitidulid and kateretid faunae are compared to reconstructed and updated faunal lists for Illinois, Indiana, Michigan, Minnesota, Ohio, and south-central Canada. Literature and distributional records suggest at least 11 additional nitidulid species may occur in Wisconsin.