Refine
Document Type
- Article (18)
- Doctoral Thesis (1)
- Preprint (1)
Has Fulltext
- yes (20)
Is part of the Bibliography
- no (20)
Keywords
- nuclear receptor (4)
- neurodegeneration (3)
- polypharmacology (3)
- Medicinal chemistry (2)
- NR4A2 (2)
- PPARγ (2)
- Target validation (2)
- drug discovery (2)
- non-alcoholic steatohepatitis (2)
- transcription factor (2)
Druggability Evaluation of the Neuron Derived Orphan Receptor (NOR-1) Reveals Inverse NOR-1 Agonists
(2022)
The neuron derived orphan receptor (NOR-1, NR4A3) is among the least studied nuclear receptors. Its physiological role and therapeutic potential remain widely elusive which is in part due to the lack of chemical tools that can directly modulate NOR-1 activity. To probe the possibility of pharmacological NOR-1 modulation, we have tested a drug fragment library for NOR-1 activation and repression. Despite low hit-rate (<1 %), we have obtained three NOR-1 ligand chemotypes one of which could be rapidly expanded to an analogue comprising low micromolar inverse NOR-1 agonist potency and altering NOR-1 regulated gene expression in a cellular setting. It confirms druggability of the transcription factor and may serve as an early tool to assess the role and potential of NOR-1.
Gout is the most common arthritic disease in human but was long neglected and therapeutic options are not satisfying. However, with the recent approval of the urate transporter inhibitor lesinurad, gout treatment has experienced a major innovation. Here we show that lesinurad possesses considerable modulatory potency on peroxisome proliferator-activated receptor γ (PPARγ). Since gout has a strong association with metabolic diseases such as type 2 diabetes, this side-activity appears as very valuable contributing factor to the clinical efficacy profile of lesinurad. Importantly, despite robustly activating PPARγ in vitro, lesinurad lacked adipogenic activity, which seems due to differential coactivator recruitment and is characterized as selective PPARγ modulator (sPPARγM).
Hepatocyte nuclear factor 4α (HNF4α) is a ligand-sensing transcription factor and presents as a potential drug target in metabolic diseases and cancer. In humans, mutations in the HNF4α gene cause maturity-onset diabetes of the young (MODY), and the elevated activity of this protein has been associated with gastrointestinal cancers. Despite the high therapeutic potential, available ligands and structure–activity relationship knowledge for this nuclear receptor are scarce. Here, we disclose a chemically diverse collection of orthogonally validated fragment-like activators as well as inverse agonists, which modulate HNF4α activity in a low micromolar range. These compounds demonstrate the druggability of HNF4α and thus provide a starting point for medicinal chemistry as well as an early tool for chemogenomics.
Introduction: Interferon alpha (IFNα) is routinely used in the clinical practice for adjuvant systemic melanoma therapy. Understanding the molecular mechanism of IFNα effects and prediction of response in the IFNα therapy regime allows initiation and continuation of IFNα treatment for responder and exclusion of non-responder to avoid therapy inefficacy and side-effects. The transporter protein associated with antigen processing-1 (TAP1) is part of the MHC class I peptide-loading complex, and important for antigen presentation in tumor and antigen presenting cells. In the context of personalized medicine, we address this potential biomarker TAP1 as a target of IFNα signalling.
Results: We could show that IFNα upregulates TAP1 expression in peripheral blood mononuclear cells (PBMCs) of patients with malignant melanoma receiving adjuvant high-dose immunotherapy. IFNα also induced expression of TAP1 in mouse blood and tumor tissue and suppressed the formation of melanoma metastasis in an in vivo B16 tumor model. Besides its expression, TAP binding affinity and transport activity is induced by IFNα in human monocytic THP1 cells. Furthermore, our data revealed that IFNα clearly activates phosphorylation of STAT1 and STAT3 in THP1 and A375 melanoma cells. Inhibition of Janus kinases abrogates the IFNα-induced TAP1 expression. These results suggest that the JAK/STAT pathway is a crucial mediator for TAP1 expression elicited by IFNα treatment.
Conclusion: We suppose that silencing of TAP1 expression provides tumor cells with a mechanism to escape cytotoxic T-lymphocyte recognition. The observed benefit of IFNα treatment could be mediated by the shown dual effect of TAP1 upregulation in antigen presenting cells on the one hand, and of TAP1 upregulation in ‘silent’ metastatic melanoma cells on the other hand. In conclusion, this work contributes to a better understanding of the mode of action of IFNα which is essential to identify markers to predict, assess and monitor therapeutic response of IFNα treatment in the future.
Als zellulärer Sensor für Gallensäuren und als Regulator zahlreicher metabolischer und inflamma-torischer Gene stellt der nukleäre Farnesoid X Rezeptor (FXR) ein vielversprechendes neues Wirkstofftarget dar. Die Aktivierung von FXR mit natürlichen oder synthetischen Liganden führte in vitro und in vivo zu zahlreichen wünschenswerten Effekten wie gesteigerter Insulinfreisetzung, verringerter Insulinresistenz oder verbessertem Lipidprofil. Daneben stellt die Aktivierung von FXR ein Prinzip zur Behandlung von Lebererkrankungen wie nicht-alkoholischer Fettleber und primärer billiärer Zirrhose dar, das mit dem FXR-Agonisten Obeticholsäure bereits in klinischen Studien überprüft wird. Existierende synthetische FXR-Liganden sind Fettsäure- bzw. Gallensäuremimetika und imitieren die physiologischen FXR-Agonisten. Die meisten synthetischen FXR-Liganden sind jedoch aufgrund von Toxizität, geringer Selektivität oder schlechter Bioverfügbarkeit nicht zur wie-teren klinischen Entwicklung geeignet. Sie stellen außerdem vornehmlich vollagonistische FXR-Ligan-den dar, doch die klinischen Erfahrungen mit Liganden anderer nukleärer Rezeptoren wie den Peroxi-somen Proliferator-aktivierten Rezeptoren (PPAR) oder den Estrogenrezeptoren (ER) haben gezeigt, dass eine zu starke Aktivierung eines Ligand-aktivierten Transkriptionsfaktors Risiken erheblicher Nebenwirkungen bergen kann. Eine Möglichkeit, dieser Gefahr vorzubeugen, bietet die Entwicklung partialagonistischer FXR-Liganden, die den Rezeptor nur mit moderater Amplitude aktivieren.
In dieser Arbeit wurde ausgehend von der in einem virtuellen Screening identifizierten Leitstruktur 1, durch medizinisch chemische Optimierung und Studien zu den Struktur-Wirkungs-Beziehungen (SAR) ein potenter und selektiver FXR-Partialagonist entwickelt. Die drei Molekülteile der Leitstruktur 1 (azide Kopfgruppe, zentraler Anthranilamidkörper und Acylsubstituent) wurden einzeln hinsichtlich ihrer Potenz an FXR untersucht und optimiert. In der Untersuchung der SAR des Acylsubstituenten zeigten sich ein 2-Naphthoyl- und ein 4-tert-Butylbenzoylsubstituent der in 1 enthaltenen 4-Methylbenzoylgruppe überlegen. Unter Beibehaltung des 2-Naphthoylsubstituenten wurde hierauf durch selektive Methylierung bzw. Reduktion die Notwendigkeit beider Amidbindungen der Subs-tanzklasse für Aktivität an FXR nachgewiesen. Durch Erweiterung der aziden Kopfgruppe um einen zusätzlichen aromatischen Ring gelang eine weitere Potenzsteigerung, die sich durch eine Methyl-gruppe an 6-Position dieses neu eingeführten Ringes noch erhöhen ließe. Andere Substituenten am aromatischen Ring der Kopfgruppe führten dagegen an keiner Position zu einer Aktivitätsverbes-serung. Der Austausch der freien Carbonsäure durch metabolisch stabilere Bioisostere wie ein Methylketon oder ein Nitril stellte sich als ohne Aktivitätsverlust möglich heraus, wobei das Tetrazol als klassisches Carbonsäurebioisoster eine Ausnahme mit geringerer Potenz bildete. Die entscheiden-de Steigerung der Aktivität der Acylanthranilamide an FXR resultierte aus der Einführung eines zusätzlichen Substituenten in 4-Position des zentralen aromatischen Ringes, wobei eine Methoxy-gruppe zur größten Potenz führte. Das resultierende Anthranilamid 2 stellt einen hochpotenten FXR-Partialagonisten mit einem EC50-Wert von 8±3 nM in einem flFXR-Reportergenassay bei 18±1% Maximalaktivierung dar und ist der Leitstruktur somit um mehr als einen Faktor 1000 überlegen.
Die optimierte Verbindung 2 wurde aufgrund ihrer großen Potenz ausführlich in vitro pharma-kologisch charakterisiert. Dabei stellte sich die Substanz als metabolisch sehr stabil, moderat löslich in Wasser und gemessen an ihrer hohen Aktivität an FXR als wenig toxisch heraus. Darüber hinaus er-wies sich 2 als selektiv für FXR über den membranständigen G-Protein-gekoppelten Gallen-säurerezeptor TGR5 (Faktor >1000) sowie über die nukleären Rezeptoren PPARα (>1000), PPARγ (~375) und PPARδ (>1000). Bei der Quantifizierung seiner Effekte auf die FXR-Targetgene SHP, CYP7A1, BSEP, OSTα und IBABP durch qRT-PCR übte 2 im Bereich 0,1 µM bis 10 µM einen konzen-trationsunabhängigen partialagonistischen Effekt von etwa 40% des Effektes des physiologischen FXR-Agonisten Chenodeoxycholsäure (CDCA) aus. Mit der Verbindung 2 wurde somit ein hochpotenter, selektiver und metabolisch stabiler FXR-Partialagonist entwickelt und charakterisiert, der sich für künftige in vitro und in vivo Studien zu partieller FXR-Aktivierung empfehlen kann.
The nuclear farnesoid X receptor (FXR) and the enzyme soluble epoxide hydrolase (sEH) are validated molecular targets to treat metabolic disorders such as non‐alcoholic steatohepatitis (NASH). Their simultaneous modulation in vivo has demonstrated a triad of anti‐NASH effects and thus may generate synergistic efficacy. Here we report dual FXR activators/sEH inhibitors derived from the anti‐asthma drug Zafirlukast. Systematic structural optimization of the scaffold has produced favorable dual potency on FXR and sEH while depleting the original cysteinyl leukotriene receptor antagonism of the lead drug. The resulting polypharmacological activity profile holds promise in the treatment of liver‐related metabolic diseases.
Chemical language models enable de novo drug design without the requirement for explicit molecular construction rules. While such models have been applied to generate novel compounds with desired bioactivity, the actual prioritization and selection of the most promising computational designs remains challenging. Herein, we leveraged the probabilities learnt by chemical language models with the beam search algorithm as a model-intrinsic technique for automated molecule design and scoring. Prospective application of this method yielded novel inverse agonists of retinoic acid receptor-related orphan receptors (RORs). Each design was synthesizable in three reaction steps and presented low-micromolar to nanomolar potency towards RORγ. This model-intrinsic sampling technique eliminates the strict need for external compound scoring functions, thereby further extending the applicability of generative artificial intelligence to data-driven drug discovery.
The repertoire of natural products offers tremendous opportunities for chemical biology and drug discovery. Natural product-inspired synthetic molecules represent an ecologically and economically sustainable alternative to the direct utilization of natural products. De novo design with machine intelligence bridges the gap between the worlds of bioactive natural products and synthetic molecules. On employing the compound Marinopyrrole A from marine Streptomyces as a design template, the algorithm constructs innovative small molecules that can be synthesized in three steps, following the computationally suggested synthesis route. Computational activity prediction reveals cyclooxygenase (COX) as a putative target of both Marinopyrrole A and the de novo designs. The molecular designs are experimentally confirmed as selective COX-1 inhibitors with nanomolar potency. X-ray structure analysis reveals the binding of the most selective compound to COX-1. This molecular design approach provides a blueprint for natural product-inspired hit and lead identification for drug discovery with machine intelligence.
Designed polypharmacology presents as an attractive strategy to increase therapeutic efficacy in multi-factorial diseases by a directed modulation of multiple involved targets with a single molecule. Such an approach appears particularly suitable in non-alcoholic steatohepatitis (NASH) which involves hepatic steatosis, inflammation and fibrosis as pathological hallmarks. Among various potential pharmacodynamic mechanisms, activation of the farnesoid X receptor (FXRa) and inhibition of leukotriene A4 hydrolase (LTA4Hi) hold promise to counteract NASH according to preclinical and clinical observations. We have developed dual FXR/LTA4H modulators as pharmacological tools, enabling evaluation of this polypharmacology concept to treat NASH and related pathologies. The optimized FXRa/LTA4Hi exhibits well-balanced dual activity on the intended targets with sub-micromolar potency and is highly selective over related nuclear receptors and enzymes rendering it suitable as tool to probe synergies of dual FXR/LTA4H targeting.
Nuclear receptors (NRs) activate transcription of target genes in response to binding of ligands to their ligand-binding domains (LBDs). Typically, in vitro assays use either gene expression or the recruitment of coactivators to the isolated LBD of the NR of interest to measure NR activation. However, this approach ignores that NRs function as homo- as well as heterodimers and that the LBD harbors the main dimerization interface. Cofactor recruitment is thereby interconnected with oligomerization status as well as ligand occupation of the partnering LBD through allosteric cross talk. Here we present a modular set of homogeneous time-resolved FRET–based assays through which we investigated the activation of PPARγ in response to ligands and the formation of heterodimers with its obligatory partner RXRα. We introduced mutations into the RXRα LBD that prevent coactivator binding but do not interfere with LBD dimerization or ligand binding. This enabled us to specifically detect PPARγ coactivator recruitment to PPARγ:RXRα heterodimers. We found that the RXRα agonist SR11237 destabilized the RXRα homodimer but promoted formation of the PPARγ:RXRα heterodimer, while being inactive on PPARγ itself. Of interest, incorporation of PPARγ into the heterodimer resulted in a substantial gain in affinity for coactivator CBP-1, even in the absence of ligands. Consequently, SR11237 indirectly promoted coactivator binding to PPARγ by shifting the oligomerization preference of RXRα toward PPARγ:RXRα heterodimer formation. These results emphasize that investigation of ligand-dependent NR activation should take NR dimerization into account. We envision these assays as the necessary assay tool kit for investigating NRs that partner with RXRα.