Refine
Document Type
- Article (17)
- Doctoral Thesis (1)
- Preprint (1)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
- nuclear receptor (4)
- neurodegeneration (3)
- polypharmacology (3)
- Medicinal chemistry (2)
- PPARγ (2)
- Target validation (2)
- drug discovery (2)
- non-alcoholic steatohepatitis (2)
- transcription factor (2)
- Chemical tools (1)
Druggability Evaluation of the Neuron Derived Orphan Receptor (NOR-1) Reveals Inverse NOR-1 Agonists
(2022)
The neuron derived orphan receptor (NOR-1, NR4A3) is among the least studied nuclear receptors. Its physiological role and therapeutic potential remain widely elusive which is in part due to the lack of chemical tools that can directly modulate NOR-1 activity. To probe the possibility of pharmacological NOR-1 modulation, we have tested a drug fragment library for NOR-1 activation and repression. Despite low hit-rate (<1 %), we have obtained three NOR-1 ligand chemotypes one of which could be rapidly expanded to an analogue comprising low micromolar inverse NOR-1 agonist potency and altering NOR-1 regulated gene expression in a cellular setting. It confirms druggability of the transcription factor and may serve as an early tool to assess the role and potential of NOR-1.
Cysteinyl leukotriene receptor 1 antagonists (CysLT1RA) are frequently used as add-on medication for the treatment of asthma. Recently, these compounds have shown protective effects in cardiovascular diseases. This prompted us to investigate their influence on soluble epoxide hydrolase (sEH) and peroxisome proliferator activated receptor (PPAR) activities, two targets known to play an important role in CVD and the metabolic syndrome. Montelukast, pranlukast and zafirlukast inhibited human sEH with IC50 values of 1.9, 14.1, and 0.8 μM, respectively. In contrast, only montelukast and zafirlukast activated PPARγ in the reporter gene assay with EC50 values of 1.17 μM (21.9% max. activation) and 2.49 μM (148% max. activation), respectively. PPARα and δ were not affected by any of the compounds. The activation of PPARγ was further investigated in 3T3-L1 adipocytes. Analysis of lipid accumulation, mRNA and protein expression of target genes as well as PPARγ phosphorylation revealed that montelukast was not able to induce adipocyte differentiation. In contrast, zafirlukast triggered moderate lipid accumulation compared to rosiglitazone and upregulated PPARγ target genes. In addition, we found that montelukast and zafirlukast display antagonistic activities concerning recruitment of the PPARγ cofactor CBP upon ligand binding suggesting that both compounds act as PPARγ modulators. In addition, zafirlukast impaired the TNFα triggered phosphorylation of PPARγ2 on serine 273. Thus, zafirlukast is a novel dual sEH/PPARγ modulator representing an excellent starting point for the further development of this compound class.
Gout is the most common arthritic disease in human but was long neglected and therapeutic options are not satisfying. However, with the recent approval of the urate transporter inhibitor lesinurad, gout treatment has experienced a major innovation. Here we show that lesinurad possesses considerable modulatory potency on peroxisome proliferator-activated receptor γ (PPARγ). Since gout has a strong association with metabolic diseases such as type 2 diabetes, this side-activity appears as very valuable contributing factor to the clinical efficacy profile of lesinurad. Importantly, despite robustly activating PPARγ in vitro, lesinurad lacked adipogenic activity, which seems due to differential coactivator recruitment and is characterized as selective PPARγ modulator (sPPARγM).
Nuclear receptor related 1 (Nurr1) is an orphan ligand-activated transcription factor and considered as neuroprotective transcriptional regulator with great potential as therapeutic target for neurodegenerative diseases. However, the collection of available Nurr1 modulators and mechanistic understanding of Nurr1 are limited. Here, we report the discovery of several structurally diverse non-steroidal anti-inflammatory drugs as inverse Nurr1 agonists demonstrating that Nurr1 activity can be regulated bidirectionally. As chemical tools, these ligands enable unraveling the co-regulatory network of Nurr1 and the mode of action distinguishing agonists from inverse agonists. In addition to its ability to dimerize, we observe an ability of Nurr1 to recruit several canonical nuclear receptor co-regulators in a ligand-dependent fashion. Distinct dimerization states and co-regulator interaction patterns arise as discriminating factors of Nurr1 agonists and inverse agonists. Our results contribute a valuable collection of Nurr1 modulators and relevant mechanistic insights for future Nurr1 target validation and drug discovery.
Hepatocyte nuclear factor 4α (HNF4α) is a ligand-sensing transcription factor and presents as a potential drug target in metabolic diseases and cancer. In humans, mutations in the HNF4α gene cause maturity-onset diabetes of the young (MODY), and the elevated activity of this protein has been associated with gastrointestinal cancers. Despite the high therapeutic potential, available ligands and structure–activity relationship knowledge for this nuclear receptor are scarce. Here, we disclose a chemically diverse collection of orthogonally validated fragment-like activators as well as inverse agonists, which modulate HNF4α activity in a low micromolar range. These compounds demonstrate the druggability of HNF4α and thus provide a starting point for medicinal chemistry as well as an early tool for chemogenomics.
The retinoid X receptor (RXR) is a ligand-sensing transcription factor acting mainly as a universal heterodimer partner for other nuclear receptors. Despite presenting as a potential therapeutic target for cancer and neurodegeneration, adverse effects typically observed for RXR agonists, likely due to the lack of isoform selectivity, limit chemotherapeutic application of currently available RXR ligands. The three human RXR isoforms exhibit different expression patterns; however, they share high sequence similarity, presenting a major obstacle toward the development of subtype-selective ligands. Here, we report the discovery of the saturated fatty acid, palmitic acid, as an RXR ligand and disclose a uniform set of crystal structures of all three RXR isoforms in an active conformation induced by palmitic acid. A structural comparison revealed subtle differences among the RXR subtypes. We also observed an ability of palmitic acid as well as myristic acid and stearic acid to induce recruitment of steroid receptor co-activator 1 to the RXR ligand-binding domain with low micromolar potencies. With the high, millimolar endogenous concentrations of these highly abundant lipids, our results suggest their potential involvement in RXR signaling.
Introduction: Interferon alpha (IFNα) is routinely used in the clinical practice for adjuvant systemic melanoma therapy. Understanding the molecular mechanism of IFNα effects and prediction of response in the IFNα therapy regime allows initiation and continuation of IFNα treatment for responder and exclusion of non-responder to avoid therapy inefficacy and side-effects. The transporter protein associated with antigen processing-1 (TAP1) is part of the MHC class I peptide-loading complex, and important for antigen presentation in tumor and antigen presenting cells. In the context of personalized medicine, we address this potential biomarker TAP1 as a target of IFNα signalling.
Results: We could show that IFNα upregulates TAP1 expression in peripheral blood mononuclear cells (PBMCs) of patients with malignant melanoma receiving adjuvant high-dose immunotherapy. IFNα also induced expression of TAP1 in mouse blood and tumor tissue and suppressed the formation of melanoma metastasis in an in vivo B16 tumor model. Besides its expression, TAP binding affinity and transport activity is induced by IFNα in human monocytic THP1 cells. Furthermore, our data revealed that IFNα clearly activates phosphorylation of STAT1 and STAT3 in THP1 and A375 melanoma cells. Inhibition of Janus kinases abrogates the IFNα-induced TAP1 expression. These results suggest that the JAK/STAT pathway is a crucial mediator for TAP1 expression elicited by IFNα treatment.
Conclusion: We suppose that silencing of TAP1 expression provides tumor cells with a mechanism to escape cytotoxic T-lymphocyte recognition. The observed benefit of IFNα treatment could be mediated by the shown dual effect of TAP1 upregulation in antigen presenting cells on the one hand, and of TAP1 upregulation in ‘silent’ metastatic melanoma cells on the other hand. In conclusion, this work contributes to a better understanding of the mode of action of IFNα which is essential to identify markers to predict, assess and monitor therapeutic response of IFNα treatment in the future.
The bile acid activated transcription factor farnesoid X receptor (FXR) regulates numerous metabolic processes and is a rising target for the treatment of hepatic and metabolic disorders. FXR agonists have revealed efficacy in treating non-alcoholic steatohepatitis (NASH), diabetes and dyslipidemia. Here we characterize imatinib as first-in-class allosteric FXR modulator and report the development of an optimized descendant that markedly promotes agonist induced FXR activation in a reporter gene assay and FXR target gene expression in HepG2 cells. Differential effects of imatinib on agonist-induced bile salt export protein and small heterodimer partner expression suggest that allosteric FXR modulation could open a new avenue to gene-selective FXR modulators.
Als zellulärer Sensor für Gallensäuren und als Regulator zahlreicher metabolischer und inflamma-torischer Gene stellt der nukleäre Farnesoid X Rezeptor (FXR) ein vielversprechendes neues Wirkstofftarget dar. Die Aktivierung von FXR mit natürlichen oder synthetischen Liganden führte in vitro und in vivo zu zahlreichen wünschenswerten Effekten wie gesteigerter Insulinfreisetzung, verringerter Insulinresistenz oder verbessertem Lipidprofil. Daneben stellt die Aktivierung von FXR ein Prinzip zur Behandlung von Lebererkrankungen wie nicht-alkoholischer Fettleber und primärer billiärer Zirrhose dar, das mit dem FXR-Agonisten Obeticholsäure bereits in klinischen Studien überprüft wird. Existierende synthetische FXR-Liganden sind Fettsäure- bzw. Gallensäuremimetika und imitieren die physiologischen FXR-Agonisten. Die meisten synthetischen FXR-Liganden sind jedoch aufgrund von Toxizität, geringer Selektivität oder schlechter Bioverfügbarkeit nicht zur wie-teren klinischen Entwicklung geeignet. Sie stellen außerdem vornehmlich vollagonistische FXR-Ligan-den dar, doch die klinischen Erfahrungen mit Liganden anderer nukleärer Rezeptoren wie den Peroxi-somen Proliferator-aktivierten Rezeptoren (PPAR) oder den Estrogenrezeptoren (ER) haben gezeigt, dass eine zu starke Aktivierung eines Ligand-aktivierten Transkriptionsfaktors Risiken erheblicher Nebenwirkungen bergen kann. Eine Möglichkeit, dieser Gefahr vorzubeugen, bietet die Entwicklung partialagonistischer FXR-Liganden, die den Rezeptor nur mit moderater Amplitude aktivieren.
In dieser Arbeit wurde ausgehend von der in einem virtuellen Screening identifizierten Leitstruktur 1, durch medizinisch chemische Optimierung und Studien zu den Struktur-Wirkungs-Beziehungen (SAR) ein potenter und selektiver FXR-Partialagonist entwickelt. Die drei Molekülteile der Leitstruktur 1 (azide Kopfgruppe, zentraler Anthranilamidkörper und Acylsubstituent) wurden einzeln hinsichtlich ihrer Potenz an FXR untersucht und optimiert. In der Untersuchung der SAR des Acylsubstituenten zeigten sich ein 2-Naphthoyl- und ein 4-tert-Butylbenzoylsubstituent der in 1 enthaltenen 4-Methylbenzoylgruppe überlegen. Unter Beibehaltung des 2-Naphthoylsubstituenten wurde hierauf durch selektive Methylierung bzw. Reduktion die Notwendigkeit beider Amidbindungen der Subs-tanzklasse für Aktivität an FXR nachgewiesen. Durch Erweiterung der aziden Kopfgruppe um einen zusätzlichen aromatischen Ring gelang eine weitere Potenzsteigerung, die sich durch eine Methyl-gruppe an 6-Position dieses neu eingeführten Ringes noch erhöhen ließe. Andere Substituenten am aromatischen Ring der Kopfgruppe führten dagegen an keiner Position zu einer Aktivitätsverbes-serung. Der Austausch der freien Carbonsäure durch metabolisch stabilere Bioisostere wie ein Methylketon oder ein Nitril stellte sich als ohne Aktivitätsverlust möglich heraus, wobei das Tetrazol als klassisches Carbonsäurebioisoster eine Ausnahme mit geringerer Potenz bildete. Die entscheiden-de Steigerung der Aktivität der Acylanthranilamide an FXR resultierte aus der Einführung eines zusätzlichen Substituenten in 4-Position des zentralen aromatischen Ringes, wobei eine Methoxy-gruppe zur größten Potenz führte. Das resultierende Anthranilamid 2 stellt einen hochpotenten FXR-Partialagonisten mit einem EC50-Wert von 8±3 nM in einem flFXR-Reportergenassay bei 18±1% Maximalaktivierung dar und ist der Leitstruktur somit um mehr als einen Faktor 1000 überlegen.
Die optimierte Verbindung 2 wurde aufgrund ihrer großen Potenz ausführlich in vitro pharma-kologisch charakterisiert. Dabei stellte sich die Substanz als metabolisch sehr stabil, moderat löslich in Wasser und gemessen an ihrer hohen Aktivität an FXR als wenig toxisch heraus. Darüber hinaus er-wies sich 2 als selektiv für FXR über den membranständigen G-Protein-gekoppelten Gallen-säurerezeptor TGR5 (Faktor >1000) sowie über die nukleären Rezeptoren PPARα (>1000), PPARγ (~375) und PPARδ (>1000). Bei der Quantifizierung seiner Effekte auf die FXR-Targetgene SHP, CYP7A1, BSEP, OSTα und IBABP durch qRT-PCR übte 2 im Bereich 0,1 µM bis 10 µM einen konzen-trationsunabhängigen partialagonistischen Effekt von etwa 40% des Effektes des physiologischen FXR-Agonisten Chenodeoxycholsäure (CDCA) aus. Mit der Verbindung 2 wurde somit ein hochpotenter, selektiver und metabolisch stabiler FXR-Partialagonist entwickelt und charakterisiert, der sich für künftige in vitro und in vivo Studien zu partieller FXR-Aktivierung empfehlen kann.
The nuclear farnesoid X receptor (FXR) and the enzyme soluble epoxide hydrolase (sEH) are validated molecular targets to treat metabolic disorders such as non‐alcoholic steatohepatitis (NASH). Their simultaneous modulation in vivo has demonstrated a triad of anti‐NASH effects and thus may generate synergistic efficacy. Here we report dual FXR activators/sEH inhibitors derived from the anti‐asthma drug Zafirlukast. Systematic structural optimization of the scaffold has produced favorable dual potency on FXR and sEH while depleting the original cysteinyl leukotriene receptor antagonism of the lead drug. The resulting polypharmacological activity profile holds promise in the treatment of liver‐related metabolic diseases.