Refine
Year of publication
Document Type
- Article (33)
- Conference Proceeding (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (35)
Is part of the Bibliography
- no (35)
Keywords
- strength training (3)
- ACL (2)
- Exercise (2)
- Low back pain (2)
- Motor control (2)
- Randomized controlled trials (2)
- Rehabilitation (2)
- Sports and exercise medicine (2)
- Strength training (2)
- accelerometry (2)
Institute
Background: Although anterior cruciate ligament (ACL) tear-prevention programs may be effective in the (secondary) prevention of a subsequent ACL injury, little is known, yet, on their effectiveness and feasibility. This study assesses the effects and implementation capacity of a secondary preventive motor-control training (the Stop-X program) after ACL reconstruction.
Methods and design: A multicenter, single-blind, randomized controlled, prospective, superiority, two-arm design is adopted. Subsequent patients (18–35 years) with primary arthroscopic unilateral ACL reconstruction with autologous hamstring graft are enrolled. Postoperative guideline rehabilitation plus Classic follow-up treatment and guideline rehabilitation plus the Stop-X intervention will be compared. The onset of the Stop-X program as part of the postoperative follow-up treatment is individualized and function based. The participants must be released for the training components. The endpoint is the unrestricted return to sport (RTS) decision. Before (where applicable) reconstruction and after the clearance for the intervention (aimed at 4–8 months post surgery) until the unrestricted RTS decision (but at least until 12 months post surgery), all outcomes will be assessed once a month. Each participant is consequently measured at least five times to a maximum of 12 times. Twelve, 18 and 24 months after the surgery, follow-up-measurements and recurrence monitoring will follow. The primary outcome assessement (normalized knee-separation distance at the Drop Jump Screening Test (DJST)) is followed by the functional secondary outcomes assessements. The latter consist of quality assessments during simple (combined) balance side, balance front and single-leg hops for distance. All hop/jump tests are self-administered and filmed from the frontal view (3-m distance). All videos are transferred using safe big content transfer and subsequently (and blinded) expertly video-rated. Secondary outcomes are questionnaires on patient-reported knee function, kinesiophobia, RTS after ACL injury and training/therapy volume (frequency – intensity – type and time). All questionnaires are completed online using the participants’ pseudonym only.
Group allocation is executed randomly. The training intervention (Stop-X arm) consists of self-administered home-based exercises. The exercises are step-wise graduated and follow wound healing and functional restoration criteria. The training frequency for both arms is scheduled to be three times per week, each time for a 30 min duration. The program follows current (secondary) prevention guidelines.
Repeated measurements gain-score analyses using analyses of (co-)variance are performed for all outcomes.
Trial registration: German Clinical Trials Register, identification number DRKS00015313. Registered on 1 October 2018.
Objectives: The aim of this study was to compare the effects of acupuncture and medical training therapy alone and in combination with those of usual care on the pain sensation of patients with frequent episodic and chronic tension-type headache.
Design: This was a prospective single-centre randomised controlled trial with four balanced treatment arms. The allocation was carried out by pre-generated randomisation lists in the ratio 1:1:1:1 with different permutation block sizes.
Setting: The study was undertaken in the outpatient clinic of Rehabilitation Medicine of the Hannover Medical School.
Participants and interventions: Ninety-six adult patients with tension-type headache were included and randomised into usual care (n = 24), acupuncture (n = 24), medical training (n = 24), and combination of acupuncture and medical training (n = 24). One patient was excluded from analysis because of withdrawing her/his consent, leaving 95 patients for intention to treat analysis. Each therapy arm consisted of 6 weeks of treatment with 12 interventions. Follow-up was at 3 and 6 months.
Main outcome measures: Pain intensity (average, maximum and minimum), frequency of headache, responder rate (50% frequency reduction), duration of headache and use of headache medication.
Clinical results: The combination of acupuncture and medical training therapy significantly reduced mean pain intensity compared to usual care (mean = −38%, standard deviation = 25%, p = 0.012). Comparable reductions were observed for maximal pain intensity (−25%, standard deviation = 20%, 0.014) and for minimal pain intensity (−35%, standard deviation = 31%, 0.03). In contrast, neither acupuncture nor medical training therapy differed significantly from usual care. No between-group differences were found in headache frequency, mean duration of headache episodes, and pain medication intake. At 3 months, the majority of all patients showed a reduction of at least 50% in headache frequency. At 6 months, significantly higher responder rates were found in all intervention groups compared to usual care.
Conclusions: In contrast to monotherapy, only the combination of acupuncture and medical training therapy was significantly superior in reduction of pain intensity compared to usual care.
Background: Self-myofascial release (SMR) aims to mimic the effects of manual therapy and tackle dysfunctions of the skeletal muscle and connective tissue. It has been shown to induce improvements in flexibility, but the underlying mechanisms are still poorly understood. In addition to neuronal mechanisms, improved flexibility may be driven by acute morphological adaptations, such as a reduction in passive tissue stiffness or improved movement between fascial layers. The aim of the intended study is to evaluate the acute effects of SMR on the passive tissue stiffness of the anterior thigh muscles and the sliding properties of the associated fasciae.
Methods: In a crossover study de sign, 16 participants will receive all of the following interventions in a permutated random order: (1) one session of 2 × 60 s of SMR at the anterior thigh, (2) one session of 2 × 60 s of passive static stretching of the anterior thigh and (3) no intervention. Passive tissue stiffness, connective tissue sliding, angle of first stretch sensation, as well as maximal active and passive knee flexion angle, will be evaluated before and directly after each intervention.
Discussion: The results of the intended study will allow a better understanding of, and provide further evidence on, the local effects of SMR techniques and the underlying mechanisms for flexibility improvements.
Introduction Current: evidence suggests that the loss of mechanoreceptors after anterior cruciate ligament (ACL) tears might be compensated by increased cortical motor planning. This occupation of cerebral resources may limit the potential to quickly adapt movements to unforeseen external stimuli in the athletic environment. To date, studies investigating such neural alterations during movement focused on simple, anticipated tasks with low ecological validity. This trial, therefore, aims to investigate the cortical and biomechanical processes associated with more sport-related and injury-related movements in ACL-reconstructed individuals.
Methods and analysis: ACL-reconstructed participants and uninjured controls will perform repetitive countermovement jumps with single leg landings. Two different conditions are to be completed: anticipated (n=35) versus unanticipated (n=35) successful landings. Under the anticipated condition, participants receive the visual information depicting the requested landing leg prior to the jump. In the unanticipated condition, this information will be provided only about 400 msec prior to landing. Neural correlates of motor planning will be measured using electroencephalography. In detail, movement-related cortical potentials, frequency spectral power and functional connectivity will be assessed. Biomechanical landing quality will be captured via a capacitive force plate. Calculated parameters encompass time to stabilisation, vertical peak ground reaction force, and centre of pressure path length. Potential systematic differences between ACL-reconstructed individuals and controls will be identified in dependence of jumping condition (anticipated/ unanticipated, injured/uninjured leg and controls) by using interference statistics. Potential associations between the cortical and biomechanical measures will be calculated by means of correlation analysis. In case of statistical significance (α<0.05.) further confounders (cofactors) will be considered.
Ethics and dissemination: The independent Ethics Committee of the University of Frankfurt (Faculty of Psychology and Sports Sciences) approved the study. Publications in peer-reviewed journals are planned. The findings will be presented at scientific conferences.
Trial status: At the time of submission of this manuscript, recruitment is ongoing.
Trial registration number: NCT03336060; Pre-results.
Study design: Systematic review with meta-analysis and meta-regression.
Background and objectives: We systematically reviewed and delineated the existing evidence on sustainability effects of motor control exercises on pain intensity and disability in chronic low back pain patients when compared with an inactive or passive control group or with other exercises. Secondary aims were to reveal whether moderating factors like the time after intervention completion, the study quality, and the training characteristics affect the potential sustainability effects.
Methods: Relevant scientific databases (Medline, Web of Knowledge, Cochrane) were screened. Eligibility criteria for selecting studies: All RCTs und CTs on chronic (≥ 12/13 weeks) nonspecific low back pain, written in English or German and adopting a longitudinal core-specific/stabilizing sensorimotor control exercise intervention with at least one pain intensity and disability outcome assessment at a follow-up (sustainability) timepoint of ≥ 4 weeks after exercise intervention completion.
Results and conclusions: From the 3,415 studies that were initially retrieved, 10 (2 CTs & 8 RCTs) on N = 1081 patients were included in the review and analyses. Low to moderate quality evidence shows a sustainable positive effect of motor control exercise on pain (SMD = -.46, Z = 2.9, p < .001) and disability (SMD = -.44, Z = 2.5, p < .001) in low back pain patients when compared to any control. The subgroups’ effects are less conclusive and no clear direction of the sustainability effect at short versus mid versus long-term, of the type of the comparator, or of the dose of the training is given. Low quality studies overestimated the effect of motor control exercises.
Failed jump landings represent a key mechanism of musculoskeletal trauma. It has been speculated that cognitive dual-task loading during the flight phase may moderate the injury risk. This study aimed to explore whether increased visual distraction can compromise landing biomechanics. Twenty-one healthy, physically active participants (15 females, 25.8 ± 0.4 years) completed a series of 30 counter-movement jumps (CMJ) onto a capacitive pressure platform. In addition to safely landing on one leg, they were required to memorize either one, two or three jersey numbers shown during the flight phase (randomly selected and equally balanced over all jumps). Outcomes included the number of recall errors as well as landing errors and three variables of landing kinetics (time to stabilization/TTS, peak ground reaction force/pGRF, length of the centre of pressure trace/COPT). Differences between the conditions were calculated using the Friedman test and the post hoc Bonferroni-Holm corrected Wilcoxon test. Regardless of the condition, landing errors remained unchanged (p = .46). In contrast, increased visual distraction resulted in a higher number of recall errors (chi² = 13.3, p = .001). Higher cognitive loading, furthermore, appeared to negatively impact mediolateral COPT (p < .05). Time to stabilization (p = .84) and pGRF (p = .78) were unaffected. A simple visual distraction in a controlled experimental setting is sufficient to adversely affect landing stability and task-related short-term memory during CMJ. The ability to precisely perceive the environment during movement under time constraints may, hence, represent a new injury risk factor and should be investigated in a prospective trial.
Background: This study investigated whether work ability is associated with the duration of unemployment, heart rate variability (HRV), and the level of physical activity. Methods: Thirty-four unemployed persons (mean 55.7 ± standard deviation 33.3 years, 22 female, 12 male, unemployed: range 1–22.5 years) participated in the cross-sectional study. The Work Ability Index (WAI) and International Physical Activity Questionnaire (IPAQ) were applied. Short-term (five minutes) resting HRV (Low Frequency (LF), High Frequency (HF), Total Power (TP)) was collected. Results: Work ability was positively associated with the HRV: LF (r = 0.383; p = 0.025), HF (r = 0.412; p = 0.015) and TP (r = 0.361; p = 0.036). The WAI showed a positive linear correlation with the amount of total physical activity (r = 0.461; p = 0.006) as well as with the amount of moderate to vigorous physical activity (r = 0.413; p = 0.015). No association between the WAI and the duration of unemployment occurred. Conclusions: the relation between self-perceived work ability, health-associated parameters, the HRV and the level of physical activity points out the relevance of health-care exercise and the need of stress-reducing interventions to improve perceived work ability. Our results point out the need for the further and more holistic development of healthcare for the unemployed.
Background: We aimed to investigate the potential effects of a 4-week motor–cognitive dual-task training on cognitive and motor function as well as exercise motivation in young, healthy, and active adults.
Methods: A total of 26 participants (age 25 ± 2 years; 10 women) were randomly allocated to either the intervention group or a control group. The intervention group performed a motor–cognitive training (3×/week), while the participants of the control group received no intervention. Before and after the intervention period of 4 weeks, all participants underwent cognitive (d2-test, Trail Making Test) and motor (lower-body choice reaction test and time to stabilization test) assessments. Following each of the 12 workouts, self-reported assessments (rating of perceived exertion, enjoyment and pleasant anticipation of the next training session) were done. Analyses of covariances and 95% confidence intervals plotting for between group and time effects were performed.
Results: Data from 24 participants were analysed. No pre- to post-intervention improvement nor a between-group difference regarding motor outcomes (choice-reaction: F = 0.5; time to stabilization test: F = 0.7; p > 0.05) occurred. No significant training-induced changes were found in the cognitive tests (D2: F = 0.02; Trail Making Test A: F = 0.24; Trail Making Test B: F = 0.002; p > 0.05). Both enjoyment and anticipation of the next workout were rated as high.
Discussion: The neuro-motor training appears to have no significant effects on motor and cognitive function in healthy, young and physically active adults. This might be explained in part by the participants’ very high motor and cognitive abilities, the comparably low training intensity or the programme duration. The high degree of exercise enjoyment, however, may qualify the training as a facilitator to initiate and maintain regular physical activity. The moderate to vigorous intensity levels further point towards potential health-enhancing cardiorespiratory effects.
Background: Individuals afflicted with nonspecific chronic low back pain (CLBP) exhibit altered fundamental movement patterns. However, there is a lack of validated analysis tools. The present study aimed to elucidate the measurement properties of a functional movement analysis (FMA) in patients with CLBP.
Methods: In this validation (cross-sectional) study, patients with CLPB completed the FMA. The FMA consists of 11 standardised motor tasks mimicking activities of daily living. Four investigators (two experts and two novices) evaluated each item using an ordinal scale (0–5 points, one live and three video ratings). Interrater reliability was computed for the total score (maximum 55 points) using intra class correlation and for the individual items using Cohen’s weighted Kappa and free-marginal Kappa. Validity was estimated by calculating Spearman’s Rho correlations to compare the results of the movement analysis and the participants’ self-reported disability, and fear of movement.
Results: Twenty-one participants (12 females, 9 males; 42.7 ± 14.3 years) were included. The reliability analysis for the sum score yielded ICC values between .92 and.94 (p < .05). The classification of individual scores are categorised "slight" to "almost perfect" agreement (.10–.91). No significant associations between disability or fear of movement with the overall score were found (p > .05). The study population showed comparably low pain levels, low scores of kinesiophobia and disability.
Conclusion: The functional movement analysis displays excellent reliability for both, live and video rating. Due to the low levels of disability and pain in the present sample, further research is necessary to conclusively judge validity.
The effects of exercise interventions on unspecific chronic low back pain (CLBP) have been investigated in many studies, but the results are inconclusive regarding exercise types, efficiency, and sustainability. This may be because the influence of psychosocial factors on exercise induced adaptation regarding CLBP is neglected. Therefore, this study assessed psychosocial characteristics, which moderate and mediate the effects of sensorimotor exercise on LBP. A single-blind 3-arm multicenter randomized controlled trial was conducted for 12-weeks. Three exercise groups, sensorimotor exercise (SMT), sensorimotor and behavioral training (SMT-BT), and regular routines (CG) were randomly assigned to 662 volunteers. Primary outcomes (pain intensity and disability) and psychosocial characteristics were assessed at baseline (M1) and follow-up (3/6/12/24 weeks, M2-M5). Multiple regression models were used to analyze whether psychosocial characteristics are moderators of the relationship between exercise and pain, meaning that psychosocial factors and exercise interact. Causal mediation analysis were conducted to analyze, whether psychosocial characteristics mediate the exercise effect on pain. A total of 453 participants with intermittent pain (mean age = 39.5 ± 12.2 years, f = 62%) completed the training. It was shown, that depressive symptomatology (at M4, M5), vital exhaustion (at M4), and perceived social support (at M5) are significant moderators of the relationship between exercise and the reduction of pain intensity. Further depressive mood (at M4), social-satisfaction (at M4), and anxiety (at M5 SMT) significantly moderate the exercise effect on pain disability. The amount of moderation was of clinical relevance. In contrast, there were no psychosocial variables which mediated exercise effects on pain. In conclusion it was shown, that psychosocial variables can be moderators in the relationship between sensorimotor exercise induced adaptation on CLBP which may explain conflicting results in the past regarding the merit of exercise interventions in CLBP. Results suggest further an early identification of psychosocial risk factors by diagnostic tools, which may essential support the planning of personalized exercise therapy.