Refine
Document Type
- Article (5)
- Conference Proceeding (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
In this paper, we present an experimental and theoretical study of excitation processes for the heaviest stable helium-like ion, that is, He-like uranium occurring in relativistic collisions with hydrogen and argon targets. In particular, we concentrate on angular distributions of the characteristic Kα radiation following the K → L excitation of He-like uranium. We pay special attention to the magnetic sub-level population of the excited 1s2lj states, which is directly related to the angular distribution of the characteristic Kα radiation. We show that the experimental data can be well described by calculations taking into account the excitation by the target nucleus as well as by the target electrons. Moreover, we demonstrate for the first time an important influence of the electron-impact excitation process on the angular distributions of the Kα radiation produced by excitation of He-like uranium in collisions with different targets.
Accurate spectroscopy of highly-charged high-Z ions in a storage ring is demonstrated to be feasible by the use of specially adapted crystal optics. The method has been applied for the measurement of the 1s Lamb shift in hydrogen-like gold (Au+78) in a storage ring through spectroscopy of the Lyman x-rays. This measurement represents the first result obtained for a high-Z element using high-resolution wavelength-dispersive spectroscopy in the hard x-ray regime, paving the way for sensitivity to higher- order QED effects.
8th International Conference on Nuclear Physics at Storage Rings Stori11, October 9-14, 2011 Laboratori Nazionale di Frascati, Italy.
Storage rings offer the possibility of measuring proton- and alpha-induced reactions in inverse kinematics. The combination of this approachwith a radioactive beamfacility allows, in principle, the determination of the respective cross sections for radioactive isotopes. Such data are highly desired for a better understanding of astrophysical nucleosynthesis processes like the p-process. A pioneering experiment has been performed at the Experimental Storage Ring (ESR) at GSI using a stable 96Ru beam at 9-11 AMeV and a hydrogen target. Monte-Carlo simulations of the experiment were made using the Geant4 code. In these simulations, the experimental setup is described in detail and all reaction channels can be investigated. Based on the Geant4 simulations, a prediction of the shape of different spectral components can be performed. A comparison of simulated predictions with the experimental results shows a good agreement and allows the extraction of the cross section.
The radiative electron capture (REC) into the K shell of bare Xe ions colliding with a hydrogen gas target has been investigated. In this study, the degree of linear polarization of the K-REC radiation was measured and compared with rigorous relativistic calculations as well as with the previous results recorded for U92+. Owing to the improved detector technology, a significant gain in precision of the present polarization measurement is achieved compared to the previously published results. The obtained data confirms that for medium-Z ions such as Xe, the REC process is a source of highly polarized x rays which can easily be tuned with respect to the degree of linear polarization and the photon energy. We argue, in particular, that for relatively low energies the photons emitted under large angles are almost fully linear polarized.
A new technique developed for measuring nuclear reactions at low momentum transfer with stored beams in inverse kinematics was successfully used to study isoscalar giant resonances. The experiment was carried out at the experimental heavy-ion storage ring (ESR) at the GSI facility using a stored 58Ni beam at 100 MeV/u and an internal helium gas-jet target. In these measurements, inelastically scattered α-recoils at very forward center-of-mass angles (θcm ≤ 1.5°) were detected with a dedicated setup, including ultra-high vacuum compatible detectors. Experimental results indicate a dominant contribution of the isoscalar giant monopole resonance at this very forward angular range. It was found that the monopole contribution exhausts 79+12−11% of the energy-weighted sum rule (EWSR), which agrees with measurements performed in normal kinematics. This opens up the opportunity to investigate the giant resonances in a large domain of unstable and exotic nuclei in the near future. It is a fundamental milestone towards new nuclear reaction studies with stored ion beams.
An experiment addressing electron capture (EC) decay of hydrogen-like 142Pm60+ions has been conducted at the experimental storage ring (ESR) at GSI. The decay appears to be purely exponential and no modulations were observed. Decay times for about 9000 individual EC decays have been measured by applying the single-ion decay spectroscopy method. Both visually and automatically analysed data can be described by a single exponential decay with decay constants of 0.0126(7)s−1 for automatic analysis and 0.0141(7)s−1 for manual analysis. If a modulation superimposed on the exponential decay curve is assumed, the best fit gives a modulation amplitude of merely 0.019(15), which is compatible with zero and by 4.9 standard deviations smaller than in the original observation which had an amplitude of 0.23(4).