Refine
Year of publication
Language
- English (187)
Has Fulltext
- yes (187)
Is part of the Bibliography
- no (187)
Keywords
- Heavy-ion collisions (4)
- Diffraction (3)
- Elastic scattering (3)
- STAR (3)
- Beam Energy Scan (2)
- Chiral Magnetic Effect (2)
- Collectivity (2)
- Correlation (2)
- Crossover (2)
- Event-by-event fluctuation (2)
Institute
- Frankfurt Institute for Advanced Studies (FIAS) (120)
- Physik (66)
- Medizin (1)
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at sNN−−−√ = 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
Global polarizations (P) of Λ (Λ¯) hyperons have been observed in non-central heavy-ion collisions. The strong magnetic field primarily created by the spectator protons in such collisions would split the Λ and Λ¯ global polarizations (ΔP=PΛ−PΛ¯<0). Additionally, quantum chromodynamics (QCD) predicts topological charge fluctuations in vacuum, resulting in a chirality imbalance or parity violation in a local domain. This would give rise to an imbalance (Δn=NL−NR⟨NL+NR⟩≠0) between left- and right-handed Λ (Λ¯) as well as a charge separation along the magnetic field, referred to as the chiral magnetic effect (CME). This charge separation can be characterized by the parity-even azimuthal correlator (Δγ) and parity-odd azimuthal harmonic observable (Δa1). Measurements of ΔP, Δγ, and Δa1 have not led to definitive conclusions concerning the CME or the magnetic field, and Δn has not been measured previously. Correlations among these observables may reveal new insights. This paper reports measurements of correlation between Δn and Δa1, which is sensitive to chirality fluctuations, and correlation between ΔP and Δγ sensitive to magnetic field in Au+Au collisions at 27 GeV. For both measurements, no correlations have been observed beyond statistical fluctuations.
We report a new measurement of the production cross section for inclusive electrons from open heavy-flavor hadron decays as a function of transverse momentum (pT) at mid-rapidity (|y|< 0.7) in p+p collisions at s√=200 GeV. The result is presented for 2.5 <pT< 10 GeV/c with an improved precision above 6 GeV/c with respect to the previous measurements, providing more constraints on perturbative QCD calculations. Moreover, this measurement also provides a high-precision reference for measurements of nuclear modification factors for inclusive electrons from open-charm and -bottom hadron decays in heavy-ion collisions.
We report a new measurement of the production cross section for inclusive electrons from open heavy-flavor hadron decays as a function of transverse momentum (pT) at mid-rapidity (|y|< 0.7) in p+p collisions at s√=200 GeV. The result is presented for 2.5 <pT< 10 GeV/c with an improved precision at high pT with respect to the previous measurements, and thus provides a better constraint on perturbative QCD calculations. Moreover, this measurement also provides a high-precision reference for measurements of nuclear modification factors for inclusive electrons from open-charm and -bottom hadron decays in heavy-ion collisions.
he chiral magnetic effect (CME) is a phenomenon that arises from the QCD anomaly in the presence of an external magnetic field. The experimental search for its evidence has been one of the key goals of the physics program of the Relativistic Heavy-Ion Collider. The STAR collaboration has previously presented the results of a blind analysis of isobar collisions (9644Ru+9644Ru, 9640Zr+9640Zr) in the search for the CME. The isobar ratio (Y) of CME-sensitive observable, charge separation scaled by elliptic anisotropy, is close to but systematically larger than the inverse multiplicity ratio, the naive background baseline. This indicates the potential existence of a CME signal and the presence of remaining nonflow background due to two- and three-particle correlations, which are different between the isobars. In this post-blind analysis, we estimate the contributions from those nonflow correlations as a background baseline to Y, utilizing the isobar data as well as Heavy Ion Jet Interaction Generator simulations. This baseline is found consistent with the isobar ratio measurement, and an upper limit of 10% at 95% confidence level is extracted for the CME fraction in the charge separation measurement in isobar collisions at sNN−−−√=200 GeV.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in sNN−−−√ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first-order and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in sNN−−−√ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
For the search of the chiral magnetic effect (CME), STAR previously presented the results from isobar collisions (9644Ru+9644Ru, 9640Zr+9640Zr) obtained through a blind analysis. The ratio of results in Ru+Ru to Zr+Zr collisions for the CME-sensitive charge-dependent azimuthal correlator (Δγ), normalized by elliptic anisotropy (v2), was observed to be close to but systematically larger than the inverse multiplicity ratio. The background baseline for the isobar ratio, Y=(Δγ/v2)Ru(Δγ/v2)Zr, is naively expected to be (1/N)Ru(1/N)Zr; however, genuine two- and three-particle correlations are expected to alter it. We estimate the contributions to Y from those correlations, utilizing both the isobar data and HIJING simulations. After including those contributions, we arrive at a final background baseline for Y, which is consistent with the isobar data. We extract an upper limit for the CME fraction in the Δγ measurement of approximately 10% at a 95% confidence level on in isobar collisions at sNN−−−√=200 GeV, with an expected 15% difference in their squared magnetic fields.